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ABSTRACT
Prior work in affect-aware educational robots has often relied on
a common belief that the relationship between student affect and
learning is independent of agent behaviors (child’s/robot’s) or uni-
directional (positive/negative but not both) throughout the entire
student-robot interaction. We argue that the student affect-learning
relationship should be interpreted in two contexts: (1) social learn-
ing paradigm and (2) sub-events within child-robot interaction.
In our paper, we examine two different social learning paradigms
where children interact with a robot that acts either as a tutor or
a tutee. Sub-events within child-robot interaction are defined as
task-related events occurring in specific phases of an interaction
(e.g., when the child/robot gets a wrong answer). We examine sub-
events at a macro level (entire interaction) and a micro level (within
specific sub-events). In this paper, we provide an in-depth corre-
lation analysis of children’s facial affect and vocabulary learning.
We found that children’s affective displays became more predictive
of their vocabulary learning when children interacted with a tutee
robot who did not scaffold their learning. Additionally, children’s
affect displayed during micro-level events was more predictive of
their learning than during macro-level events. Last, we found that
the affect-learning relationship is not unidirectional, but rather is
modulated by context, i.e., several affective states facilitated stu-
dent learning when displayed in some sub-events but inhibited
learning when displayed in others. These findings indicate that
both social learning paradigm and sub-events within interaction
modulate student affect-learning relationship.
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1 INTRODUCTION
A considerable amount of research has demonstrated the correla-
tion between affect and learning, and indicates that student affect
has the potential to foster or hinder learning depending on the
interaction context when it is elicited [9, 12, 24, 27]. Hence, it is
important to establish a contextualized understanding of the re-
lationship between affect and learning. Guidelines that capture
the affect-learning relationship in different contexts would be very
useful in the design of affective pedagogical robots. However, prior
work in affective pedagogical robots seldom interpret students’ af-
fective displays with respect to different social learning paradigms
or in different interaction contexts [15, 26, 31, 33]. Instead, a single
model or policy is often applied across different contexts. Over-
simplification also occurs, i.e., affect observations are only made
during certain contexts.

Our paper aims to empirically investigate the correlation be-
tween students’ learning outcomes with respect to their facial affect
in different social learning paradigms (i.e., learning with a robot
tutor and with a robot tutee), and varying levels of sub-events
within child-robot interaction from macro (entire interaction) to
micro (within specific interaction event). We collected a dataset of
40 kindergarten-age children who played a collaborative education
game with a social robot companion. The game app was designed to
help children learn new vocabulary concepts using a touch-screen
tablet. Children played with a robot that either behaved as a more-
knowledgable tutor or as a less-knowledgable tutee for two 30-min
learning sessions.

This paper makes the following contributions. To our knowl-
edge, it is the first comparative study to investigate how child-robot
interaction paradigms (i.e., tutee/tutor robots) and varying lev-
els of sub-events within child-robot interaction impact children’s
affect-learning relationships. Second, we present a comprehensive
evaluation method to extract children’s facial affect and analyze
student affect-learning relationship. Lastly, we provide analyses
and proofs that both robot’s social role and sub-events within in-
teraction modulate children’s affect-learning relationship.
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2 RELATEDWORK
2.1 Affect and Learning
Positive affect (e.g., concentration, joy and excitement) is believed
to facilitate learning by strengthening motivation [27], increas-
ing persistence [29], improving the use of mental resources [2],
and facilitating learning-relevant cognitive processes such as in-
formation processing and category sorting tasks [14]. In contrast,
negative affect (e.g., frustration, boredom and anger) can be detri-
mental to learning [9, 27], leading to decreased motivation and
effort [23, 28]. However, negative affect states can also facilitate
learning under certain situations [12, 24]. For example, confusion
can promote learning by increasing the focus of attention on learn-
ing material [12]. Mild and acute stress can improve learning and
memory [36]. Sometimes negative states are more beneficial than
positive ones. For instance, Mills et al. [24] found that people’s
deep-reasoning comprehension on expository text became better
when they felt sad than happy. Taken as a whole, both negative
and positive affective states can benefit learning depending on the
interaction context in which they are elicited.

2.2 Affect-Aware Educational Robot
Human facial expression is one of the most powerful channels to
sense and detect affective due to the face’s rich expressiveness and
relative ease of automatic data collection and analysis by video [4,
11]. Children’s facial expressions have been widely integrated into
affect-based interactive learning methods using social robots and
virtual avatars [6, 10, 15, 33, 37]. However, analyzing the triadic
interplay between the interaction context, elicited student affect,
and learning is widely unaddressed in the field.

Prior research has often assumed a fixed, uni-directional rela-
tionship between an affective state and learning outcomes across
an entire learning interaction – without examining the modulatory
effect of interaction context nor incorporating this interdependence
into agent behavior models [15, 26, 37]. For example, Woolf et al.
[37] implemented a simple rule-based affect extension in their vir-
tual tutoring system to deal with students’ affective states. Other
works have used model-free reinforcement learning for a robot to
learn a single personalized policy to foster learning and engage-
ment [15, 26]. In these systems, the policy’s reward function (i.e., a
weighted sum of student valence and engagement) remains fixed
across the entire child-robot game play – irrespective of learning
progress or the child’s and robot’s behaviors. In other words, the
child’s positive valence is always treated as a positive reinforcer
for the robot’s action, and negative valence is always used as a
negative reinforcer.

Prior work has also tended to privilege a fixed set of affective
states when constructing student models to design robot’s reactions
to learners’ affect [15, 26, 33]. For example, Spaulding et al. [33]
incorporated affective data into student skill estimation models
using a Bayesian Knowledge Tracing (BKT) algorithm to infer a
child’s acquisition of reading skills. However, it assumed that smile
and engagement states (measured by Affdex) were the most rele-
vant to children’s learning. The model incorporated only these two
affective measures (over more than 10 other affect and facial ex-
pression features) as the observation nodes in their BKT model. An
empirical analysis of the possible relationships between multiple

affect features and student learning outcomes was not provided in
their child-agent context.

Recently, there is a growing appreciation that face-based affect
should be recognized and interpreted in the context of interac-
tion [5, 6, 17, 31] . For example, Hoque et al. [17] found that users
can smile in response to frustration during a task deliberately de-
signed to elicit the users’ frustration. However, widely-used affect
recognition tools only recognize one type of smile (assuming posi-
tive valence). To remedy this, Hoque et al. [17] integrated contextual
information from the interaction (such as instances of incorrect in-
put) into their affect recognition model to achieve a higher accuracy
of classifying frustrated verses happy smiles. Despite the growing
attention on contextualized interpretation of affect, it seems that
affect integration rules are still predominantly determined by the-
ory, experts, and intuition. We argue that data-driven empirical
investigations on the complex links between interaction context,
student affect and learning are also needed.

2.3 Robot Role and Macro/Micro Events
Within Child-Robot Interaction

Social robots have been used to support children’s learning in a va-
riety of learning contexts such as storytelling [26], second language
learning [20, 30, 32] and STEM [3, 8, 21]. In these contexts, the robot
often takes on either a tutor role or a tutee role [1]. Prior work found
that a tutee robot elicited greater enjoyment in kids than a tutor
robot [19], but a tutee robot might hinder children’s learning under
some circumstances, which can lead to frustration/confusion [35].
In addition, [7] found that children interacting with a tutor robot
showed less face-based affect than children with a tutee robot. The
authors, however, did not investigate the interplay between chil-
dren’s affect and learning in each of the tutor and tutee groups.
Therefore, this work will examine the impact of robot’s role (tu-
tor/tutee) on both children’s affective display and affect-learning
relationship.

Regarding sub-events within child-robot interaction, prior work
often compared and analyzed affect signals over an entire inter-
action [7, 15, 26]. For example, [7] analyzed children’s affect over
the entire learning interaction but neglected children’s affective
display during micro-level events (e.g., robot’s actions) within an
interaction. In this work, we argue that aggregating children’s af-
fect exhibited across a macro event can very likely lose the subtlety
of children’s affect, especially for those transitory facial expres-
sions/affective states (e.g., dimpler).

Figure 1: The integrated system for a robotic learning com-
panion consists of a robot, a computer, a USB camera and a
touch-screen tablet.



Figure 2: Overview of theWord Quest game. (1) A new game
mission starts. (2) A game object is found, and the player
can press the yellow button to check whether the object is
correct. (3) Two correct game objects have been found and
are shown in the top bar of the screen. When four correct
objects are found, the mission is completed.

Figure 3: The WordQuest game sends out a quest mission,
and the robot and child take turns finding objects. Each
player can only find one object during their turn.When four
correct objects are found irrespective of who finds them, the
quest mission is completed.

3 INTERACTION DESIGN
3.1 Child-Robot Educational Game Play
Our integrated system enables a robot to interact with children and
facilitate their vocabulary learning. It consists of (1) a computer
hub, (2) ourWord Quest vocabulary game on a touchscreen tablet,
(3) a social robot, and (4) a suite of sensors (Figure 1). The computer
hub communicates with other modules of the system using ROS
(the open-source Robot Operating System).

Word Quest is a collaborative game similar to the classic game,
I Spy, in which a child and a robot take turns identifying objects
called out by a quest mission on a touchscreen tablet (Figure 2).
Game missions are issued for the child and robot to complete as
a team. Each game mission (e.g., “can you find objects that are
in crimson?”) contains one target word (e.g., “crimson”) that the
child needs to learn (Figure 3). The child learns its meaning by
taking turns with a robot finding the objects in the game scene that
represents the target word’s meaning (e.g., objects that are red in
color). When a candidate object is found, the player needs to press
the button above the object to know whether the object is correct.
Once a player receives the result, their turn is over, and it is the
other player’s turn. A gamemission takes multiple robot-child turns
to finish. When four correct objects are collected by the child-robot
team, the mission is completed. The game has 11 missions in total
with the following target words: azure, gigantic, minuscule, garment,
lavender, vehicle, delighted, crimson, soar, aquatic, and recreational
activity.

The social robot used in our study is Tega, an appealing and
expressive robot designed and deployed as a learning companion for
young children. To date, it has been deployed in various educational
settings for different learning tasks [15, 25]. The robot is about 11

inches tall with a squash-and-stretch body with a plush exterior.
The robot speaks with a child-friendly voice and can display body
and facial expressions. It is able to support verbal interaction using
the robot’s built-in microphones and Google Automatic Speech
Recognition. In our study, the robot was fully autonomous.

The sensor modules in our system collect children’s interaction
data from touch and vision modalities. All touch actions on the
tablet screen in the game (e.g., tapping and dragging) and children’s
task-related data (e.g., interaction duration) are captured by the
touchscreen tablet. An external USB camera located behind the
tablet and aimed at the child’s face is used to record the child’s
facial expression for affect analysis during interaction.

3.2 Tutee and Tutor Robot Companions
The robot in our word learning activity performs different sets of
behaviors for each role (Table 1). In the tutor role, the robot knows
the meanings of all words, behaves as a tutor that demonstrates
knowledge, and gives informative feedback to the child without
ever making a mistake throughout the game play. In the tutee role,
the robot behaves as a novice peer who lacks the knowledge of all
vocabulary words, is less competent than the child, but is eagar
to learn. In this paradigm, the tutee robot has a 0.4 probability of
selecting a correct object but neither explains the word’s meaning
nor provides explanation to the child. The intuition behind this
design is that the tutee robot is only able to find correct objects by
guessing and never knows the meanings of target vocabulary words.
Thus, the child can only learn the word’s meaning by trial-and-error
while interacting with the tutee robot.

3.3 Macro and Micro Sub-Events
Our child-robot interaction contains multiple distinct task events
(e.g., entire child’s turn, when the robot finds an object, etc.). To
more accurately evaluate how children express their affect within
an episode, we extracted five levels of task events representing a
wide range of time periods in the learning interaction (Figure 4).

All extracted interaction events are color-coded in Figure 4. The
entire robot-child turn is the only top-level event (in pink). Then,
we broke down an entire quest event into the robot’s turn and
child’s turn to form two-player, turn-level events (in cyan and light
green). The within-robot-turn/within-child-turn events consist of 8
events (in yellow), capturing key learning-related moments within
either the robot’s turn or the child’s turn. The bottom-level events
are four contingent events (in green and red) extracted from the two
within-player-turn events (robot receives result and child receives
result) – when the child/robot receives a correct/wrong result.

4 THE STUDY
To investigate the triadic relationship between interaction context,
children’s facial affect display and vocabulary learning, we designed
a between-subject experiment with two conditions: Tutor condition
in which the robot behaved as a tutor and Tutee condition in which
the robot acted as a tutee.

4.1 Hypotheses
The main research question is that interaction contexts impact the
predictive power of children’s affect on their vocabulary learning.



Table 1: Robot’s tutee and tutor roles with their associated behaviors.

Role Player Turn Robot Behaviors Behavior Definition Example

Tutor Robot
Keyword Definition Explain the meaning of the mission word “Vehicle is something you can drive, steer or ride in.”
Game Object Selection Always select a correct object NA
Vocabulary Explanation Explain why the object the robot chooses is correct “Train is a vehicle, because we can ride in it.”

Child Help Offering Offer to help the child find a correct object “Do you need my help?”
Keyword Definition Explain the meaning of the mission word to the child “Color azure means blue”
Hint Providing Share hints on the meaning of the word “Azure is a color”

Tutee Robot Help Asking Ask the child to help find an object “Can you please help me find a correct object?”
Game Object Selection Have a 0.4 probability of selecting a correct object NA
Asking for Explanation Ask why the object the robot chooses is wrong “Can you tell me why I am wrong?”

Child Asking for Thoughts Process Ask how the child finds out which object is correct “Why did you choose this one? I want to learn from you.”
Curiosity-driven Speech Show curiosity in what the child is going to find “I am curious of what you will find!”

Figure 4: Given five levels of sub-events from macro to micro, 15 sub-events in total were extracted within a robot-child turn.

The interaction contexts are defined in the study as twofold: (1)
social learning paradigm (H1 & H2) and (2) sub-events within an
interaction (H3 & H4).

H1: Children’s affective display will be significantly different
between the tutee and tutor conditions.

H2: Children’s affect exhibited when interacting with the tutee
and tutor robots will have significantly different correlations with
their vocabulary learning.

H3: Children’s affect exhibited during micro-level interaction
events (i.e., events occurring within either robot’s turn or child’s
turn) will predict their vocabulary learning more strongly than their
affect aggregated over macro-level interaction events (i.e., entire
child’s/robot’s/child-robot turns).

H4: Children’s affective states can be positively and negatively
correlated with vocabulary learning depending on the sub-events in
which they are observed. An affective state exhibited in a sub-event
can be positively correlated with vocabulary growth but negatively
correlated when exhibited in another sub-event.

4.2 Participants
We recruited 43 children between the ages of 5–7 from a local pub-
lic school through flyers. The research was approved by our uni-
versity’s research ethics board. After obtaining the consent forms
signed by the children’s parents, we randomly divided them into the
two conditions counter-balanced by age, gender, prior knowledge
of target vocabulary, and English proficiency (native or English
language learner). Participants were not informed of the condition
they were in. A pre-test was administered to determine children’s
vocabulary and English proficiency levels. Two students from the
Tutee condition and one from the Tutor condition withdrew from
the study for reasons not related to the study (e.g, early school
departure). A total of 40 children completed the study (Tutee: n=19,
Tutor: n= 21). There was no statistically significant difference in
children’s average age (Tutee: 6.00±0.74, Tutor : 5.85±0.65), gender
(Tutee: 57.89% female, Tutor: 61.9% female), pre-test score (Tutee:
2.68±1.37, Tutor : 2.44±1.43), and English proficiency (Tutee: 52.63%
native, Tutor : 47.62% native) across the two study groups.

4.3 Procedure
The study protocol consisted of a pre-interaction vocabulary as-
sessment, two Word Quest game sessions with the robot (one week
apart), and an immediate post-interaction vocabulary assessment
following each session (Fig 5). In each game session, a child played
the Word Quest game with the robot for 20–30 minutes. In the first
session, the experimenter taught the child the basics of how to
play the game with the robot. The experimenter guided the child
through a practice quest mission (i.e.,"can you spy something blue")
for five minutes, in which the child and robot took turns finding
objects in the game. After this introduction, the child and robot
started the real quest missions. The experimenter stayed in the
experiment room but did not intervene the learning sessions. In
the Tutee condition, the game would automatically terminate the
current mission and load the next mission if the tutee robot and
child were not able to complete the mission within six minutes.
This time constraint in the Tutee condition ensured that the child
would be able to proceed and try all required game missions in a
30-minute learning session, while preventing them from struggling
with a game mission for too long.

Figure 5: The experiment consisted of two learning sessions
and 11 game missions in total. Two sessions were one week
apart.

Figure 6: Children’s vocabulary assessment administrated at
both pre-test and post-test and followed the PPVT format.
In this example, the examiner asks the examinee: “which
one of the four stickers is a vehicle?” and then the examinee
points to an object.



Figure 7: Data pipeline for extracting, filtering and analyzing contextualized affect features from the raw outputs of Affdex
SDK. Each child-word episode corresponds to the time period where a child works on a quest mission with a robot.

Table 2: Mean scores and standard deviations of children’s
vocabulary assessments by experimental condition

Condition Pre-Test Post-Test Score Change

tutee 2.68 (1.38) 4.63 (1.74) 1.95 (2.27)
tutor 2.43 (1.43) 6.00 (2.07) 3.57 (2.33)

5 EVALUATION
5.1 Children’s Vocabulary Learning
5.1.1 Vocabulary assessment. The pre- and post-vocabulary tests
followed the format of the Peabody Picture Vocabulary Test (PPVT) [13],
in which the examinee is shown pages with four pictures on each,
and the child is to point to the picture that illustrates the meaning
of the stimulus word spoken by the examiner (Figure 6). To avoid
random guessing and reduce false positive answers, the examiner
also encouraged the child to inform the examiner if the child did
not know the meaning of the stimulus word, and asked the child to
explain why they selected the picture for the word. The pre- and
post-tests included the 11 target words in theWord Quest game.

5.1.2 Vocabulary acquisition. Children’s learning performancewas
measured by directly calculating the score difference between a
child’s post- and pre-vocabulary test scores. The pre-test result
was used to form a baseline of participants’ knowledge before the
robot intervention. The immediate post-tests were administered at
the end of each learning session, with words that appeared in the
given session, to avoid confounding factors potentially caused by a
delayed post-test (e.g., children’s exposure to the test vocabulary
words at school/home before the delayed post-test).

Overall, children in both tutor and tutee groups learned vocabu-
lary words from interacting with a social robot (Table 2). Children
who interacted with a tutor robot showed significantly higher learn-
ing gain, measured by the difference between pre- and post-test
vocabulary scores (t(38) = 2.224, p = 0.032). Interacting with a
tutor robot promoted children’s learning more effectively, probably
because a tutor robot’s knowledge demonstration made it easier
for children to grasp the meanings of target vocabulary words. In
section 6, we present detailed analyses of how children’s affective
display correlates to their vocabulary learning for each robot role,
as well as in both macro (entire turn) and micro (within specific
interaction-event context) levels of the interaction.

5.2 Children’s Affective Displays
The pipeline for detecting, filtering and constructing contextualized
affect features for the correlation analyses is displayed in Figure 7.

5.2.1 Face-based affect detection. We video recorded children’s
facial expressions during learning sessions using the front-facing
camera. Children’s face-based affect was measured using Affdex

SDK 4.0 at approximately 30 fps (a commercial tool marketed by Af-
fectiva, Inc, Boston,MA) USA [22]. Affdex produces 30 affect-related
metrics from video or images of faces. This includes estimates of
seven emotions (e.g., joy, anger, contempt), 21 facial expressions
(e.g., brow furrow, lip frown), one engagement metric, and one
valence metric. All these metrics have a normalized range of 0 (no
affective expression/ state detected) to 100 (expression or state fully
present) except Valence that has a range of -100 (fully negative va-
lence) to 100 (fully positive valence). For each video frame, Affdex
SDK attempts to detect a face and returns a score for each affect-
related metric if a face is detected. Affdex returns a null value when
no face is detected.

5.2.2 Affect data filtering. After extracting real-valued affect esti-
mates from collected videos of all children, we constructed a dataset
of 440 child-word episodes (40 children x 11 words), each of which
corresponds to a child working on a quest mission with the ro-
bot (e.g., participant #2 working on the mission gigantic). Then,
we filtered out the episodes that have a total video frame number
smaller than 1,000 (33.3 secs) or have less than 30% of its video
frames containing real-valued affect data, as they lacked a substan-
tial portion of the affect estimates due to technical failures within
interaction (e.g., camera shut down during interaction or lighting
was too dim to detect a face). In total, we obtained a final dataset of
404 child-word episodes (Tutee: 198 episodes, Tutor : 206 episodes).
We applied a median filter operating over a sliding window of 15
frames (0.5s) to the raw real-valued affect metric vectors to smooth
and filter out artifacts or dropped frames in the data.

5.2.3 affect data aggregation. To aggregate vector outputs from
affect metrics into scalar values for a given time window, W, we
selected four methods commonly used in signal processing: mean,
max, number of peaks, and average height of detected peaks over a
time window. It was implausible to find one universal aggregation
method that can adequately summarize any given metric’s value
vector over any given eventwindow due to the diversity of our affect
features (i.e., 30 affect metrics and multiple interaction events). Max
and total number of peaks were chosen to catch highly expressive
yet transitory facial expressions (e.g., lip pucker) over W, as the
methods are more sensitive to short signal spikes over largeW (e.g.,
entire robot turn). Conversely, mean and average peak height were
used to capture the overall expressivity of a metric overW.

Both the number of peaks and average height of detected peaks
were measured using Scipy’s built-in signal processing tool [18]. A
peak is detected when the magnitude of a real-valued output from
an affect metric is at least 1/4 of this metric’s max value, with its
prominence above 10 and a minimum distance of 5 frames between
two detected peaks. For an affect metric vector during W, the four
scalar values from the aggregation methods form a summary vector.
Since Valence has a range of [−100, 100], max, number of peaks and



peak height methods were applied to both its negative and positive
values, returning a summary vector of 7 scalar values.

5.2.4 contextualized affect features. We measured children’s af-
fect exhibited during each sub-event within child-robot interaction
extracted in Section 3.3 by applying the four affect aggregation
methods (e.g.,mean) to 30 median-filtered affect vectors (e.g., smile)
captured during the event. Then, we obtained 30 contextualized
affect features (i.e., affect summary vectors) for that particular event.
Since 15 sub-events (e.g., robot receives result) were extracted in
total, 450 contextualized affect features were generated in total.
A child’s smile displayed when the robot receives its result, for
example, is first outputted from Affdex SDK and median-filtered
as a value vector. Then, we calculated the mean, max, number of
peaks and average peak height of this value vector. These four
scalar values form a summary vector for smile contextualized in
the event of robot receives result, and this four-item summary vector
is one of the 450 contextualized affect features for the child.

5.3 Children’s Affect-Learning Relationship
After measuring children’s vocabulary acquisition in section 5.1
and extracting their contextualized affect features in section 5.2, we
analyzed the relationship between each contextualized affect fea-
ture and children’s vocabulary acquisition using the Kendall rank
correlation. The Kendall rank correlation was selected, as most of
our contextualized affect features were highly skewed according
to the Levene’s and Shaprio-Wilk tests. For each contextualized
affect feature, the max, mean, and average peak height values in its
affect summary vector were labeled as quartile bins. The quartile
ranges were computed using the min and max value of the feature
observed throughout the dataset in each condition. A contextu-
alized affect feature was considered significantly correlated with
learning only if at least one of its aggregation values in its summary
vector demonstrated a statistical significance (p < 0.05), and the
correlation magnitude above |r | > 0.2 to exclude weak correlations.

The correlation results from this analysis were presented in
Table 412, and then used to evaluate the hypotheses H2, H3 and
H4.

6 RESULTS AND DISCUSSION
In this section we summarize children’s overall affect display per
robot role as well as the analysis results of the affect-learning cor-
relations with respect to social learning paradigm (tutor role verses
tutee role) and sub-events within child-robot interaction (micro
verses macro).

6.1 Children’s overall expressiveness per robot
role

We measured children’s affective displays during the entire learn-
ing interaction by using the four aggregation methods (mean, max,
1Sub-events marked with † are action-triggered instantaneous events, so the time
window for these sub-events is 3 seconds capturing 1.5 seconds before and after the
action occurrences.
2The correlation values from the affect summary vector, for most contextualized affect
features listed in the table, are either positive or negative but not both, so only their
largest positive/negative correlation values are displayed. Four features have both
positive and negative correlations, so their largest positive and negative values are
both displayed.

Table 3: Children’s affect displays over the entire interaction
per robot role. Children in the Tutee condition were signif-
icantly more expressive in 13 affective states/facial expres-
sions except fear.

Affect Metric More Expressive
Condition

Aggregation Methods
(U-test p < 0.05)

Fear tutor peak height
Anger tutee max
Contempt tutee max, #peaks
Surprise tutee max, peak height
Attention tutee max
Engagement tutee #peaks
Brow Raise tutee max
Eye Closure tutee mean, peak height, #peaks
Inner Brow Raise tutee peak height
Jaw Drop tutee mean, max, #peaks, peak height
Lid Tighten tutee mean, max, #peaks, peak height
Mouth Open tutee mean, #peaks, peak height
Smirk tutee #peaks
Upper Lip Raise tutee max, peak height

#peaks, peak height) to convert each affect metric’s value vector
over the two entire learning sessions into a four-item summary
vector. Since the values in summary vectors for most affect metrics
are significantly skewed, the Mann-Whitney u-test was used to
measure, for a given affect metric’s summary vector, the difference
in each aggregation value between the two conditions. An affect
metric was considered significantly different between the condi-
tions only when at least one aggregation value in its summary
vector has a significant u-test result (p < 0.05).

We found 14 out of 30 affect metrics significantly different by
condition. Children in the Tutee condition were significantly more
expressive than children in the Tutor condition for most of the 14
metrics except fear (Table 3). Specifically, children who interacted
with the tutee robot exhibited significantly greater attention and
engagement, as well as negatively-valenced affect metrics such as
contempt and smirk. Therefore, the results confirmed H1.

Children interacting with a tutor robot received the robot’s help
and correct answers on every turn, so the robot’s behaviors could
have become predictable to children. Children may thus have be-
come less expressive and attentive as the sessions progressed. In
contrast, the tutee robot made occasional mistakes and did not find
correct objects every time. The tutee robot also showed growth
mindset and curiosity when finding a wrong object. This set of
tutee behaviors might have elicited children’s greater engagement
and surprise in the game play, as well as higher attention to robot’s
behaviors. Similarly, children in the Tutee group showed greater
facial expressions associated with negative valence, probably be-
cause children might have experienced more frustration and stress
when learning new words without robot’s guidance.

6.2 Effect of robot role on children’s
affect-learning correlations

As show in Table 4, 64 and 9 contextualized affect features in total
were significantly correlated with vocabulary learning in the Tutee
and Tutor conditions, respectively. Moreover, the Tutee condition
had more affect metrics significantly correlated with learning in
all five layers of sub-events (i.e., entire turn, player turn, within
robot turn, within child turn, and contingent event) than in the Tutor
condition.



Table 4: Results on correlations between affect metric and learning per robot role and per sub-event.

Sub-Event Sub-Event Name Learning-Correlated Affect Metrics (p < 0.05, |r | > 0.2)

Type Total in
Tutee

Total in
Tutor Metrics in Tutee Metrics in Tutor

Entire
Turn Robot-child turn 6 1 anger(0.22), eyeWiden(0.2), browFurrow(0.2), noseWrinkle(0.2), chinRaise(0.21),

lipPress(0.24) engagement(-0.25)

Player
Turn

Entire robot’s turn 7 0 noseWrinkle(0.24), lipSuck(0.22), lipPress(0.22), valence(0.3), chinRaise(0.23),
contempt(0.23), smirk(0.2)

Entire child’s turn 2 1 lipSuck(0.21),lipPress(0.24) lipPucker(0.24)
All events 9 1

Within
Robot
Turn

Robot turn start† 2 1 chinRaise(0.21), joy(-0.23) valence(0.25)
Robot search 1 0 noseWrinkle(0.21)

Robot finds object† 9 2 dimpler(-0.23), contempt(0.31), lipStretch(-0.21), cheekRaise(-0.21), lipSuck(-0.22),
valence(-0.22), disgust(0.26), smirk(0.3), attention(-0.24)

surprise(-0.23),
jawDrop(0.22)

Robot receives
result† 7 1 dimpler(-0.22), smirk:(0.28,-0.24), disgust(0.31), contempt(0.27,-0.28),

upperLipRaise(-0.23), chinRaise(0.23) attention(0.21)

All events 19 4

Within
Child
Turn

Child turn start† 1 0 dimpler(-0.22)
Child search 1 0 mouthOpen(-0.25)
Child finds object† 1 1 valence(-0.24) eyeClosure(0.26)
Child receives
result† 3 0 valence(0.23), contempt(0.23), joy(0.22)

All events 6 1

Contingent
Event

Robot correct† 8 0 chinRaise(0.28), engagement(0.27), valence(-0.3), disgust(0.3), upperLipRaise(-0.24),
smirk(-0.25), dimpler(-0.26), lipStretch(-0.24)

Robot incorrect† 4 NA dimpler(-0.21), smirk(0.24), contempt(0.26,-0.22), disgust(0.3) NA

Child correct† 9 0 joy(-0.25), smile(-0.27), smirk(0.21), sadness(-0.21), noseWrinkle(-0.25),
contempt(0.23,-0.25), browFurrow(-0.31), mouthOpen(-0.28), disgust(-0.22)

Child incorrect† 3 2 eyeWiden(0.33), negative valence(0.23), fear(0.22) lipPucker(0.25),
noseWrinkle(0.21)

All events 24 2

All All events 64 9

Table 5: Affect metrics that have both significantly positive and negative correlations with learning in different sub-events.

Affect Metric Sub-Events Within Interaction Robot Condition
Max Positive Correlation (r > 0.2) Max Negative Correlation (r < −0.2)

brow furrow Robot-child turn (0.205) Child correct (-0.307) Tutee
contempt Robot finds object (0.306) Robot receives correct (-0.277) Tutee
disgust Robot receives result (0.306) Robot correct (-0.284) Tutee
joy Child receives result (0.223) Child correct (-0.252) Tutee
lip suck Entire robot turn (0.221) Robot finds object (-0.219) Tutee
nose wrinkle Entire robot turn (0.241) Child correct (-0.247) Tutee
smirk Robot finds object (0.296) Robot correct (-0.245) Tutee
valence Entire robot’s turn (0.295) Robot correct (-0.297) Tutee

Overall, children’s affect was more closely tied to their vocab-
ulary learning when exhibited in the Tutee condition than in the
Tutor condition. These results validateH2, and indicate that, when
a tutee robot does not directly coach a child, the child’s affect ex-
hibited in the interaction becomes more crucial for their learning.
When designing future educational robots that interact with chil-
dren as their peers instead of tutors, it is especially important to
integrate children’s affect into the computational models that guide
robot’s behaviors and decision making.

6.3 Effect of macro and micro sub-events on
affect-learning correlations

We analyzed the affect-learning correlations within each of the
15 sub-event. This provided insights into which affect features in
each sub-event can lead to predicting students’ vocabulary growth.
Table 4 depicts the list of micro events within the robot’s and child’s
turns (N = 8), and contingent events that follow each robot/child
turn (N = 4). Our results show that the within-robot-turn events
have 19 and 4 learning-correlated affect features in the Tutee and Tu-
tor conditions, respectively. In contrast, only 6 and 1 affect features

in the within-child-turn events were found significantly correlated
with learning in the Tutee and Tutor conditions, respectively. Hence,
for both Tutor and Tutee conditions, more affect features observed
during within-robot-turn events were correlated to children’s learn-
ing than during within-child-turn events. This finding indicates
that children’s affect exhibited in response to the robot’s behaviors
is a stronger predictor of their learning outcomes than their affect
displayed when children themselves perform the learning task.

Among the within-robot-turn events, Robot finds object and Ro-
bot receives result have the greatest number of learning-correlated
affect features in both the Tutee condition (Robot finds object: 9;
Robot receives result: 7) and Tutor condition (Robot finds object: 2;
Robot receives result: 1). Furthermore, children’s affect expressed
in the four contingent events extracted from Robot receives result
and Child receives result predicted their learning outcomes best
among all events from all five event layers. Specifically, 24 affective
features correlated with learning in the Tutee group during the four
contingent events, and 2 features in the Tutor group during the
three contingent events. These results confirm H3.



Figure 8: The correlation distribution between contextual-
ized affect features and vocabulary learning by condition
and affect metric. Multiple affect metrics have significantly
positive and negative correlations with learning in different
sub-events within child-robot interaction.

These results suggest that children’s affective displays during
micro events of small intervals within child-robot interaction can
contain rich information on their learning to predict student learn-
ing outcomes. In contrast, aggregating affect exhibited throughout
the entire learning interaction does not necessarily lead to accurate
student learning prediction. Thus, when designing future affect-
aware pedagogical agents, it can be more effective and efficient to
capture student affect exhibited during short critical time periods
within the interaction (e.g., when either robot or child receives
feedback on their learning attempts). Last, the difference in the
number of significant features during contingent events between
two conditions (Tutor : N = 2; Tutee: N = 24) may explain why chil-
dren’s affect exhibited when interacting with a tutee was a strong
predictor of their learning outcomes. Namely, children’s affective
response to the results of the robot’s and their own attempts helped
them figure out the meanings of quest words when the robot did
not directly give them any hints or help.

6.4 Affect metrics having both positive and
negative correlations in different
sub-events

Among 30 affect metrics, 8 metrics in the Tutee condition have
both significantly positive and negative correlations with children’s
learning (p < 0.05; |r | > 0.2) in different sub-events (Figure 8,
Table 5). None of the metrics from the Tutor condition have both
significantly positive and negative correlations. Brow furrow, for
example, shows a wide range of correlations (r ∈ [−0.307, 0.205]).
It is positively correlated with learning when exhibited during the
entire-robot-child-turn event (r = 0.205), while negatively correlated
with learning when the child receives the result of their correct
attempt (r = −0.307). These results show that the relation between

children’s affective displays and learning is neither fixed nor uni-
directional, but rather is contingent on the interaction events.

Furthermore, some negatively-valenced affect metrics includ-
ing contempt, disgust and smirk were positively correlated with
children’s learning outcomes when exhibited during either the
robot-find-object or robot-receive-result events in the Tutee condition
(contempt: r = 0.306; disgust: r = 0.306, smirk: r = 0.296). Admit-
tedly, one should not interpret the negatively-valenced affect labels
at face value. These active expressions, however, may indicate that
children were highly engaged in evaluating and affectively reacting
to the robot’s learning performance. This active engagement helped
them more accurately infer about word meanings through the tutee
robot’s trial-and-error. This finding further strengthens the poten-
tial of negative affect as facilitator of learning in certain contexts,
and resonates with the prior research showing that negative affects
including confusion and sadness improved learning under certain
situations [12, 24].

Overall, these results show that children’s affective displays com-
bined with associated interaction contexts are correlated with word
learning, in contrast to just considering children’s affective dis-
plays alone, confirming H4. When designing future affect-aware
pedagogical agents, the correlation direction (positive/negative)
between student affect and learning outcomes needs to be con-
textualized in specific sub-events within child-robot interaction,
rather than pre-determined, as an affect metric may facilitate or
inhibit learning when displayed in different micro- and macro-level
interaction events.

7 CONCLUSION AND FUTUREWORK
Designing educational robots that can successfully leverage stu-
dent facial affect to promote student learning poses a significant
challenge, namely, how to understand the complex relationships
between interaction context, student affect, and learning. We col-
lected a rich dataset to perform a detailed analysis of the corre-
lations between these three factors. We showed that both robot
role and sub-events within student-robot interaction modulate the
relationship between student affect and learning outcomes.

The affect-learning relationship for some contextualized affect
features was more sensitive to the four affect aggregation methods,
as we found that 4 of 73 contextualized affect features had both
significantly positive and negative correlations returned by the
aggregation methods (Table. 4). Thus, we plan to analyze how
different affect aggregation methods impact the affect-learning
correlations. Second, we plan to use different commercial affect
extraction tools (e.g., FACET) to capture children’s facial affect and
compare their detection accuracy, as they have only been evaluated
on datasets of adults’ faces [34]. Given the insights in this paper,
we also plan to integrate children’s affect into state-of-art student
cognitive models (e.g.,[16]) to foster children’s vocabulary learning
in child-robot interaction.
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