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ABSTRACT

We developed a novel early childhood artificial intelligence
(AI) platform, PopBots, where preschool children train and in-
teract with social robots to learn three Al concepts: knowledge-
based systems, supervised machine learning, and generative
Al We evaluated how much children learned by using Al
assessments we developed for each activity. The median
score on the cumulative assessment was 70% and children
understood knowledge-based systems the best. Then, we an-
alyzed the impact of the activities on children’s perceptions
of robots. Younger children came to see robots as toys that
were smarter than them, but their older counterparts saw
them more as people that were not as smart as them. Chil-
dren who performed worse on the Al assessments believed
that robots were like toys that were not as smart as them,
however children who did better on the assessments saw
robots as people who were smarter than them. We believe
early Al education can empower children to understand the
Al devices that are increasingly in their lives.
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Figure 1: The PopBots platform consists of a smartphone-
based social robot, LEGO blocks, LEGO WeDo motors, and
a block-based programming interface on a tablet.

1 INTRODUCTION

Artificial intelligence, or Al, will have a huge impact on our
society and experts say that now is the time to prepare for a
rapidly-changing, Al-powered economy [4]. Today’s inter-
active devices are far more advanced than those from even a
decade ago. These devices behave more like socially inter-
active beings than machines — communicating via spoken
language, recognizing faces, learning users’ preferences, ac-
quiring new skills over time, and more. Even for society’s
youngest members, Al has begun to impact the ways that
many children live, learn, and play [6, 13]. All of this sets the
stage for a future where children grow up not just as digital
natives, but as Al natives who will have fundamentally dif-
ferent relationships with technology than prior generations

(6].
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An important question is when should children begin to
learn about AI? Many young children already interact with
devices, such as smart speakers and smart toys, on a daily
basis which has led researchers to explore privacy and safety
concerns related to children and Al [13]. In our own work,
we have found that children eagerly engage with Al but
have not been taught how it works which leads to faulty
assumptions about what the technology can do [6, 7]. There-
fore, we advocate for intervention as early as possible, even
in preschool classrooms (ages 4 to 6).

Previously, we introduced PopBots, an early childhood Al
and robotics platform that allows preschool through second-
grade children (ages 4-7) to explore Al topics by building,
programming, and training social robots [22]. In this pa-
per, we sought to understand how did developmental fac-
tors, like perspective taking skills, impact what chil-
dren could learn about AI? and how did children’s per-
ceptions of “thinking machines" change after they en-
gaged in educational AI activities?

2 BACKGROUND
Children’s Perceptions of Robots

Social robots interact with people in more human-like ways:
speech, non-verbal cues, gaze, emotive expressions, etc. Prior
work has shown that young children perceive and respond
in rich ways to the non-verbal cues of social robots including
back-channeling, attentive behavior, and vocal expressivity
[11, 15, 21]. In general, children tend to ascribe emotional
states, mental states, intentionality, and morality to intelli-
gent social artifacts [2, 9, 18]. Prior findings suggest that chil-
dren’s psychological attributions and emotional connection
to social robots are robust; they persist even after children
are shown how they are built and programmed [19].

However, younger children are still developing their un-
derstanding of "what it means to be alive" making their at-
tributions less consistent across the population than their
older counterparts [9, 16]. The reasons for these differences
were not always immediately apparent, but some tended to
be dependent on children’s individual interactions with the
robots (e.g., whether or not it says their name correctly) as
well as social and cultural factors (e.g., how other people talk
about the robot or smart device) [6, 7, 18].

Mioduser and Levy explored the role of experience in chil-
dren’s understanding of robots by conducting a study where
they asked Kindergarten children to describe the actions
of a vehicle-like robot as it did increasingly complex tasks
[14]. When the robot did simple tasks, children used more
mechanical descriptions of the robot such as “It’s driving for-
ward, then turning left” However, as the tasks became more
complex, children used more psychological descriptions, “It
wants to go to the light” In a follow-up study, Levy and

Mioduser let children program robots before asking children
to describe the robot’s behavior [12]. They saw that even
as behaviors became more complex, children maintained
giving technical descriptions of the robot’s behavior. How-
ever, when then asked to describe the behavior of robots
they had not programmed, children reverted to using more
psychological descriptions. Still, the experience of program-
ming robots changed the way that children thought about
the robots (mechanically versus psychologically), even if the
differences did not transfer to new robots. In this work, we
expected that at first, young children will relate to robots
as social and intellectual beings. Then, after learning more
about how a robot’s “mind" works, young children will bet-
ter able to articulate how machine intelligence compares to
other people.

Children’s Theory of Mind Skills

Perspective-taking, or the ability to view the world from
another’s vantage point is rooted in one’s Theory of Mind
skills [1]. Children around the age of 6 or 7 are still developing
the final stage of Theory of Mind skills, cognitive perspective
taking, or “the understanding of false belief and predicting
actions on the basis of beliefs that are false rather than true."
[1]. In the PopBots activities, children relate to the robot as a
social being to understand the algorithms that are running
in its “mind”. Children are asked to understand the robot’s
perspective making it likely that their comprehension of Al
will be dependent on their Theory of Mind skills.

Wellman and Liu compiled multiple studies to develop a
series of tasks to assess children’s Theory of Mind skills [20].
The tasks use storytelling and targeted questions to measure
children’s understanding of diverse desires, diverse beliefs,
knowledge access, content false belief, explicit false belief,
belief emotion, and real-apparent emotion. Key Theory of
Mind abilities that children need to understand Al in Pop-
Bots activities are knowledge access understanding — that
a person may not know something that you know, content
false-belief understanding — that another person may believe
something incorrect that will impact their behavior, and ex-
plicit false belief understanding — knowing how a character
will behave given its knowledge state. Wellman and Liu saw
that 73% of 3 to 5-year-old children could correctly answer a
knowledge access question, that 59% of children could cor-
rectly answer a content false belief one, and 57% of children
could correctly do explicit false belief [20]. We hypothesize
that Theory of Mind development will be a significant factor
in children’s understanding of AI with PopBots.

3 POPBOTS: EARLY CHILDHOOD Al ACTIVITIES

To teach children about Al concepts, we developed the Preschool-

Oriented Programming (PopBots) Platform [22]. Some of our
primary design considerations were to help children draw



connections between the activities and their own experi-
ences, to appeal to children with varied backgrounds and
interests, and to empower children to reflect on and discuss
Al

The platform consists of a social robot toolkit, a program-
ming interface on a tablet computer, and three hands-on
activities with assessments for young children to explore
machine learning and reasoning algorithms (Figure 1). We
developed the activities and assessments through a series of
pilot tests and workshops with 26 children. We tested a num-
ber of different Al topics, including deep learning and style
transfer. For the evaluative study in classrooms, we settled
on the 3 topics that were easiest for children to grasp and
that had meaningful connections to children’s experiences
with smart devices. The activities allow children to guide
themselves through developing each algorithm from scratch.

PopBots Robot

Children build their own LEGO robot characters using regu-
lar LEGO and LEGO DUPLO blocks. The robot is programmable
but also has autonomous functionality as it plays an active
role. As children go through each hands-on activity, the so-
cial robot talks to them — explaining the algorithm logic and
encouraging students to try new things.

PopBots Activities

Children use the tablet with the blocks-based interface to
program and train the robot for each Al activity. The pro-
gramming and training interface is entirely picture-based,
built on Scratch blocks, to accommodate children who can-
not yet read [10]. We used PopBots to teach children about
three Al concepts, each packaged in a child-friendly activity:
Knowledge-Based Systems, Supervised Machine Learning,
and Generative Al. We chose these topics because they are
relevant to the kinds of Al algorithms that children are ex-
posed to through smart toys and entertainment apps.

Figure 2: Screenshots of Knowledge-Based Systems activity:
Rock-Paper-Scissors. The left is the interface for entering the
rules of Rock-Paper-Scissors. The top line reads “paper beats
rock.” The right is for playing Rock-Paper-Scissors against
the robot.

In Knowledge-Based Systems, computers store expert in-
formation about how to solve problems then use that infor-
mation to make decisions. Games are a great example where
the system needs to choose the next move depending on

what the system predicts the human player might do next.
Children explored this topic by entering the rules of Rock-
Paper-Scissors and then playing against the robot (Figure 2).
As the child plays, the robot uses a state probability transi-
tion matrix to predict the child’s next move. If the robot’s
guess for the child’s next move is greater than chance (33%),
the robot says “I think you will put X, so I will put Y because
Y beats X.” Otherwise, the robot says “I'm not sure what
you’ll do next, I'll just guess”

Figure 3: Screenshot of Supervised Machine Learning ac-
tivity: Food Classification. Children label foods as good
(healthy) or bad (unhealthy) by dragging them to the appro-
priate box. Children can ask the robot to guess where a food
goes by clicking on it.

Supervised Machine Learning is another common Al al-
gorithm that involves acquiring a knowledge base from ex-
amples. Children encounter Supervised Machine Learning
systems when they use personalized recommender systems
for media streaming applications such as YouTube Kids. In
our activity, children are introduced to training sets and how
robots learn patterns by labelling a subset of foods as healthy
or unhealthy (Figure 3); these foods form the training set.
Then, children can touch any of the unlabeled foods, the test
set, to hear the robot’s prediction for how it should be clas-
sified given its similarities to foods in the training set. The
robot has a database of 20 foods where each food is labeled
with its name, color(s), food group(s), and amount of calories
and sugar in a 100 gram serving. When children touch foods
in the test set, the robot predicts its label by comparing it
to known foods in the training set: “Bananas are a lot like
corn and corn is healthy. So, I guess, bananas are healthy
too." Children experiment to see how different training sets
impact the robot’s accuracy on the test set.

Finally, Generative Al is very different from the other two
topics. We chose this activity to show children that robots
can be creative, in their own way. Rather than learning rules,
the system generates a new output based on children’s input
song, within the bounds of parameters the child gives it. Real
world examples include camera apps that use style transfer
filters to remix photographs. In PopBots, children explore
how a robot creates a new melody by changing the tempo



Figure 4: Screenshot of Generative Al activity: Music Remix.
The left interface is defining the tempo and chord progres-
sion parameters for musical emotions. The right, for creat-
ing songs for the robot to remix.

and progressions of an input melody by the child (Figure
4). For example, happy songs have a faster tempo with an
ascending melody in a major key. Children associate differ-
ent combinations of tempo and progressions with emotions
(excited, happy, sad, surprised) to teach musical emotions to
the robot. Then, children take turns demonstrating a melody
to the robot and listening to how the robot transforms it
based on these “emotion filters" to produce a new melody.

PopBots Assessments

We developed assessments for each activity as a set of mul-
tiple choice questions to probe what children understood
about each Al concept. We verified the assessments in the
pilot tests, comparing children’s performance on them with
their demonstrated understanding in semi-structured inter-
views [22]. Each question has an associated picture and chil-
dren select the multiple choice response they think is best.
For each topic, we probed children’s understanding with 3 or
4 questions about the algorithm’s basic functionality, edge
cases, and initialization.

Knowledge-Based Systems (KBS)

(1) We teach the robot the normal rules of Rock-Paper-
Scissors. Then, Sally plays rock and the robot plays
paper, who does the robot think has won? Sally or the
robot? (Robot. Tests if children understand how the
robot uses rules to decide who wins.)

(2) Sally plays paper five times. What does the robot think
she will play next? Rock, paper, or scissors? (Paper.
Tests if children understand how robot uses its oppo-
nent’s past behavior to predict future behavior.)

(3) The robot thinks that Sally will play paper next. What
will the robot play so that it can beat Sally? Rock, paper,
or scissors? (Scissors. Tests if children understand how
robot uses its predictions to decide what to do next.
Requires an understanding of false belief.)

(4) We changed the rules so that they are all opposite rules
(paper beats scissors). Sally plays scissors and the robot
plays paper. Who does the robot think has won? Sally
or the robot? (Robot. Tests if children understand that

the robot’s knowledge is limited to the rules it is taught,
even if they are wrong.)

Figure 5: Interface for a question on the Supervised Machine
Learning (SML) AI assessment. SML #1: You teach the robot
that strawberries and tomatoes go in the good group. Now,
which group will the robot think chocolate goes in? The good
group or the bad group?

Supervised Machine Learning (SML)

(1) You teach the robot that strawberries and tomatoes
into the good group, and do not teach it about any other
foods. Which group will the robot think chocolate goes
in? The good group or the bad group? (Good. Tests if
children understand how the algorithm is initialized
and that a robot with only good or bad examples will
put everything in one category.)

(2) What food does the robot think is most like a tomato?
Strawberry, banana, or milk? (Strawberry. Tests if chil-
dren understand how the robot uses multiple features
of foods to determine which is most similar.)

(3) You put ice cream in the good (healthy) category and
bananas in the bad (unhealthy) category. What cate-
gory will the robot put corn in? The good category or
the bad category? (Bad. Tests if children understand
how the robot puts similar foods in the same category.
Requires knowledge access and false belief understand-
ing.)

Generative Al (GAI)

(1) Priya asks the robot to play back a song and she sets
the (parameter) bars in the middle. Does the robot
play the same song or a different song? (Same. Tests if
children understand the robot’s initialization where it
does not change the tempo or notes of its input song.)

(2) Priya asks the robot to play back a song and she puts
the bars to the right. Does the robot play the same
song or a different song? (Different. Tests if children
understand that changing the parameters given to the
robot will result in the robot changing the tempo and
notes of the input song.)

(3) When the bars are to the right, does the robot’s song
still have to have some of the same notes as Priya’s
input? (Yes. Tests if children understand that the output
song is based on the input the robot is given.)



4 MATERIALS
Theory of Mind Assessment

Figure 6: Interface for the Explicit False Belief question on
the Theory of Mind Assessment question. The boy is looking
for his mittens. He believes that they are in his closet, however,
they are really in his backpack. Where will Scott look for his
mittens first? Children select the location where they think
the boy will look first.

We converted Wellman and Liu’s Theory of Mind assess-
ments [20] into a multiple choice question interface on the
tablet or on paper, similar to the one in Figure 6. Given that
Wellman and Liu’s tasks used stories, we created colorful
scenes that would play as a movie on the tablet or that the
researcher could read aloud to the students from a book.
From Wellman and Liu’s original set of tasks, we used the
three that were relevant to PopBots [20].

Knowledge Access: “Child sees what is in a box and judges
(yes - no) the knowledge of another person who does not
see what is in a box.”

Content False Belief: “Child judges another person’s false
belief about what is in a distinctive container when the child
knows what it is in the container”

Explicit False Belief: “Child judges how someone will search
given that person’s mistaken belief”

Perception of Robots Questionnaire

Children completed a questionnaire about their perceptions
of robots and Al either on a tablet computer or on paper.
The questionnaire was in the format of the Monster Game
from a previous study (see Figure 7) [6]. In this format, two
on-screen characters offer differing (often opposite) opinions
about robots. The child decides which character they agree
with more, or if their opinion is somewhere between the two.
The first question concerns whether the robot has the agency
to choose to disobey rules. The next two questions explore
how children perceive the robot’s intelligence — if robots
are intelligent is their intelligence static or can it grow? The
last two questions examine if children saw the robot as an
intelligent social being and what level of maturity they would
assign to it. The bold statements are the target statements
that we used in our analysis.

Figure 7: Interface for the Perception of Robots Question-
naire. The researcher read the opinions of the two monsters
and then children selected which monster they agreed with
more or an equal sign if they were somewhere in the middle.

Do you agree with either view or are you in the middle?

(1) Robots follow rules / robots do not follow rules.
(2) I am smarter than robots / robots are smarter.
(3) Robots can’t learn new things / robots can learn.
(4) Robots are like toys / robots are like people.

(5) Robots are like children / robots are like adults.

Participants

Our study was comprised of a series of PopBots Workshops
that we conducted during Spring 2018 with children from
four schools in the Greater Boston Area. We ran the PopBots
activities in 5 classrooms and collected data from 80 four
to six-year-old children. Three schools were public schools
where our workshops were carried out during their after
school program (Table 1 schools A, B, C). Another was a
private school, and our workshop was conducted in the class-
room as part of a unit on robots (D, E). All of the children
were in preschool, meaning that they had not yet begun
formal grade school. Pre-Kindergarten (or Pre-K) children
were ages 4-5 and Kindergarten children were ages 5-6.
This separation of classrooms by ages was standard for the
schools we worked with. Classroom E contained only Pre-K
children, Classrooms A, C, and D contained only Kinder-
garten children, and classroom B was mixed with Pre-K and
Kindergarten. Our sample of students included children with
a range of backgrounds and socioeconomic statuses, as de-
tailed in Table 1. All students in the classroom were welcome
to participate, however, we only collected data from children
whose parents completed a consent form.

5 PROCEDURE

First, children completed the Perception of Robots Question-
naire and Theory of Mind Assessment. The researcher would
read each question, then children would respond on their
individual tablets or papers. Although the assessments were
done with everyone in the classroom, children did not share
or discuss their answers until after everyone had answered.



ED®  ELL®) | Avg. Gender | N
Age (% Fem.)
A | 514%  329% | 550 33.3% 6
B | 389%  484% | 6.00 37.5% 16
C |143%  22% 5.37 42.1% 19
D | NA© <% 5.05 50.0% 22
E N/A© <19 4.59 47.1% 17
5.18 48.8% 80

Table 1: School and Participant Data [5]. (a) Percent of stu-
dents who are economically disadvantaged as defined by the
household income of their parent/guardian(s). (b) Percent
of students who are English language learners. (c) Private
school classrooms did not share socioeconomic status data.

Then, children went through the PopBots Al activities. The or-
der of the activities remained consistent across the different
classrooms:

(1) Introduction to Programming with the PopBots

(2) Knowledge-Based Systems with Rock-Paper-Scissors
(3) Supervised Machine Learning with Food Classification
(4) Generative Al with Music Remix

Classrooms completed each Al activity in 10-15 minutes.
Next children completed the Al assessment to measure the
extent to which they understood different topics. After all
the AI activities and assessments, children completed the
post-test Perception of Robots Questionnaire.

Data and Analysis

We collected quantitative data about children’s responses
from the questionnaires. To support these data, we also
recorded observations while children completed the activi-
ties. In particular, we noted children’s questions and obser-
vations, their understanding of the activities as they went
through them, and how they would talk through their rea-
soning about their responses. Each session was also video
recorded for later analysis.

6 RESULTS
Performance on Theory of Mind Assessment

Children’s scores were graded in the same way as Wellman
and Liu, where a question is only correct if a child gets both
the target and control question correct [20]. Our sample of
4 to 6-year-old children was quite consistent with Wellman
and Liu’s data for 3 to 5-year-olds (Figure 8). The knowledge
access question was the easiest for children to get correct, at
75%. The false belief questions proved to be more difficult,
with both at 55% of correct answers. The similarity of our
results to prior work suggests that the Theory of Mind As-
sessment delivered on the tablet is comparable to the original
tasks.

Percent Correct Answers on Theory of Mind Assessment

80%

60%

40% 75% 73%

55% 9% 55% 57%
20%

% Children who Answered Correctly

0%

Knowledge Access Content False Belief Explicit False Belief

PopBots Wellman & Liu

Figure 8: A comparison of children’s scores on the Theory of
Mind Assessment compared to those found in Wellman and
Liu [20]. Our results closely match theirs.

Performance on PopBots Al Assessments

Distribution of Children's Scores on Al Assessment

Cumulative Score = ¢+ i “ I
Sl sere | 1 }——_

0.0 0.2 0.4 0.6 0.8 1.0
Score

KBS Score

Assessment

Figure 9: Children’s scores on the PopBots assessments. The
average cumulative was 66.8%. Children best understood
Knowledge-Based Systems (¥ = 71.8%), then Supervised Ma-
chine Learning (X = 71.5%), then Generative AI (X = 51.5%).

As reflected by their performance on the Al assessment,
children seemed to grasp the Al concepts well. The median
score was 70% (IQR = 57.1% — 80.0%) with an average score
of 66.8% (see Figure 9). Kindergarten children performed a bit
better than Pre-K children (Mdn = 70.0% vs Mdn = 63.3%).
Children best understood the Knowledge-Based Systems
(KBS) activity with Rock-Paper-Scissors (Mdn = 75.5%,% =
71.8%), next Supervised Machine Learning (SML) with Food
Classification (Mdn = 66.7%, X = 71.5%), and finally Genera-
tive Al (GAI) with Music Remix (Mdn = 66.7%,% = 51.5%).
In a previous paper, we found that differences in children’s
understanding sometimes depended on their age, grade, or
the extent to which they explored the activities (especially
for GAI) [22].

We expected to see that Theory of Mind skills would im-
pact children’s understanding and ability to correctly answer
assessments. The third question in the KBS assessment, KBS
#3: “The robot thinks that Sally will play paper next. What
will the robot play so that it can beat Sally? Rock, paper, or



scissors?" strongly resembles the explicit false belief question
If the boy thinks that his mittens are in the closet, where will
he look for them first?. Only 55% of children could correctly
answer the explicit false belief question. We were surprised
to find that of the 39 children who initially got the explicit
false belief question wrong, 28 of them were able to get KBS
#3 correct. Out of all children, 76.6% got that question cor-
rect. Furthermore, later children encountered the third SML
question SML #3: “You put ice cream in the good (healthy)
category and bananas in the bad (unhealthy) category. What
category will the robot put corn in?”. This question required
all three Theory of Mind skills: a child must reflect on the
fact that the robot has no prior knowledge of whether corn
is healthy or not, recognize that it had a false belief about
which foods are healthy, and then follow the logic of Su-
pervised Machine Learning to come to the conclusion that
the robot’s false belief would cause it to put corn in the un-
healthy group with the bananas. On this question, 85.5% of
children answered correctly. Reframing this in terms of the
order of the activities (Figure 10), we saw that children who
incorrectly answered Theory of Mind related questions in
the beginning were capable of answering related questions
correctly when they came up in the activities. We hypothe-
sized that framing Al concepts through the robot’s cognition
would help children understand Al algorithms, but we also
saw that children’s understanding of Al algorithms boosted
their Theory of Mind reasoning.

Change in Theory of Mind Skills Throughout Curriculum

100%

p=10.003

* p<0.001 p<0.001

80%
60%

40% 75% 77%
55%

7%
55%
20%

g

% Children who Answered Correctly

Knowledge Access Content False Belief Explicit False Belief
= Supervised Machine Leaming #3

== Trendline of Scores,**p <001

ToM Pre-test
Knowledge-Based Systems #3

Figure 10: Change in proportion of children who correctly
answered Theory of Mind related questions throughout the
experiment. We saw an unexpected increase in the number
of children who correctly answered Theory of Mind related
questions throughout the curriculum.

Perception of Robots Questionnaire

In the results of Perception of Robots Questionnaire, a 3-by-3
Chi-square goodness of fit test found that, on every question,
the distribution of children’s responses differed significantly
from an equal distribution, as shown in Figure 11. Therefore,
we used 2-by-2 Chi-square goodness of fit tests with adjusted

Pre-test:
Perception of Robots Questionnaire

. SSDONSES 2
Statement Proportion of Responses (dl_z) »
ODisagree O Neutral @ Agree If=

Robots can learn 15% 19% 66%| 32.67 | < le4**
:Khr;br«::]izl\\‘n)smllnw 3% 3504 6% 3023 | < 1ed**
Robots are more like

children than adulis  [LOZ0 45% 45%| 23.24 | <led™
o e e 1% 60% 29%| 22.29 | < le4**
Ir‘z‘zhmurc smarter than |57 62% | 17%)| 15.61 | < 1ea**

Figure 11: Results of the Perception of Robots Questionnaire
pre-test. We used a Chi-square test to see if the observed fre-
quencies differ greatly from the expected frequency of chil-
dren being equally likely to choose either response.

a = 0.017 to determine if any response was significantly
likely or unlikely. Most children felt that robots can learn
(66%; Agree vs. Disagree y? = 19.22,p < 0.0001**; Agree
vs. Neutral y? = 14.8,p = 0.0001**) and very few children
disagreed that robots always follow the rules (3%; Agree
vs. Disagree y? = 31.6,p < 0.0001**, Neutral vs. Disagree
x? = 15.04,p = 0.0001**). These results suggest that children
believed that while robots are able to become smarter, they
are still not able to think freely outside of the rules.

Most children were unsure of whether or not robots are
smarter than themselves (62%; Agree vs. Neutral )(2 =14.58,p
0.0001**, Neutral vs. Disagree y? = 12.05, p = 0.0005**) and
whether they were more like people or toys (60%; Agree
vs. Neutral y? = 5.9,p = 0.015*, Neutral vs. Disagree y% =
19.12,p < 0.0001*"). Children’s indecisiveness about whether
robots were smarter or not was also seen in an earlier study
where younger children (4-6-years old) were less sure about
the robot’s intelligence than their 7-10-year-old counterparts
[6]. Finally, we saw that very few children disagreed that
robots are more like children than adults (10%, ; Agree vs.
Disagree y*> = 12.98,p = 0.0003**, Neutral vs. Disagree
x% = 12.98,p = 0.0003**). When reasoning about their an-
swers, children often referred to their previous attributions.
Some children believed the robot was not like an adult be-
cause adults are usually smarter than they are. Others who
said the robot was like an adult, reasoned that robots must
always follow rules because adults did.

In separating children by grade, we saw that Pre-K chil-
dren were significantly more likely to agree that robots are
more like children than adults (77%) compared to Kinder-
garteners (28%; y? = 18.16,p < 0.0001**). This was driven
by the fact that all of the four-year-olds said robots were like
toys and almost all thought that robots were like children.
Children’s reasons for their answer on this question did not
make it apparent why these differences existed. One possi-
ble explanation is that, as found in previous studies, older



children are more sensitive to an object’s intentionality and
draw bigger distinctions between a device that is acting of its
own volition versus being propelled or controlled externally
[7, 8]. Therefore, perhaps older children had a higher regard
for the autonomy of the robot and saw robots as more similar
to people, while younger children saw robots as toys and
associated them more with children. However, on both of
these questions, half of the children answered neutrally so
perhaps most children would be unsure unless some other
experience caused them to lean in a particular direction.

Post-test:
Perception of Robots Questionnaire

Statement Proportion of Responses 1.2 P
ODisagree O Neutral 0 Agree =2
Robots can learn 13% 12% 75%| 40.65 | < le-4**
:{t‘zl)r«::liz‘)l\\'a)s follow 14% 39% 47%]| 1021 | 6.1e-2**
pR?:,:?zAh:u“z::t like 31% 33% 35%| 0.04 0.98
Roborsare smarter han 36% 38%  26%| 148 | 048
Robots are more like 21% 49% 25%| 2.98 0.23

children than adults

Figure 12: Results of the Perception of Robots Questionnaire
post-test. We used a Chi-square test to see if the observed
frequencies differ greatly from the expected frequency of
children being equally likely to choose either response.

Pre-test to Post-test:
Changes in Perception of Robots

Statement Proportion of Responses

:zhms are smarter than " 2% 6% 34% 10% 20% 1
Robots can leamn .z% 64% 4% 13% .[
Robots are like people P‘ 19% 6% 539% 2% ”%{
than toys
Robots always follow the % 21% 52% 29513%
rules*
Robots are more like % 18% 48% 0%
children than adults **

Neutral — - Neutral —

5 No Change
Disagree Agree

To Neutral

Figure 13: Changes in responses from pre-test to post-test
on the Perception of Robots Questionnaire. Blue represents
the number of children who moved to disagree. Red is the
number of children who moved to agree. Gray represents
the children who moved to neutral (dark gray) or did not
change their answer at all. We used a Wilcoxon signed rank
test to determine if the amount of change was significant.

In the post-test, more children agreed that robots could
learn (75%) than in the pre-test. This makes sense given that
robot "learned" the rules of Rock-Paper-Scissors, healthy and

unhealthy food classifications, and emotional music parame-
ters from the children in the activities. On the other questions,
we saw that fewer children gave neutral responses. This was
driven by the fact that groups of children who initially re-
sponded with 'Neutral’ changed their answers to ’Agree’ or
‘Disagree’ in the post-test. This supports our hypothesis that
after learning about Al, children were better equipped to
express their understanding of AL

Differences in Perception by Grade

Robots are more like people than toys

80% 13% 7%

15% 40% 45% ]‘ **

0% 50% 100%

Pre-K

Grade

K

Robots are smarter than me

20%  27% 53%

Pre-K
2% 2%  16% ]‘ *

0% 50% 100%
O Neutral Agree

Grade

Disagree

Figure 14: In the Perception of Robots post-test, Pre-K chil-
dren felt much more strongly that robots were like toys and
smarter than them compared to the Kindergarten children.

Figure 13 shows how children’s responses changed from
pre-test to post-test. According to a Wilcoxon signed rank
test, there was a significant amount of change in children’s
answers on two questions: Robots always follow the rules
(Z = -2.09,p = 0.039%) and Robots are more like children
than adults (Z = 3.22,p = 0.0010*"). A lot of children who
initially said that robots always followed the rules changed
their minds, likely influenced by the Generative Al activity
where the robots demonstrated creativity. Then, on the other
question, a lot of children decided that robots are more like
adults than children.

Some of the changes in perceptions of robots were de-
pendent on the grade of the child. On the pre-test, many
Pre-K children were not sure if robots were smarter or like
people than toys, but after the PopBots activities they were
more decisive. More than half of the Pre-K children said that
robots were smarter than them, compared to only 16% of
Kindergarten children (y? = 8.05,p = 0.0178*) (Figure 14).
Interestingly, Pre-K children also came to see robots more
like toys than people. On the post-test 80% of Pre-K chil-
dren said the robots were more like toys, compared to 15%
of Kindergarten children (y? = 21.1,p < 0.0001**). Pre-K
children did not see a contradiction in a toy being more
intelligent than themselves.



Differences in Perception by Al Assessment Score

Robots are smarter than me

27% 53% 20%
Top 25%

58% 16%  26%

Quartile

Bottom
25%

0% 50% 100%
Robots are more like people than toys
27% 73%
Top 25%
0/ 219
Bottom 53% 21%

25% 26% *x

Quartile

0% 50% 100%
ONeutral Agree

Disagree

Figure 15: In the Perception of Robots post-test, children
whose AI assessment scores were in the bottom quartile
were more likely to disagree that robots were smarter than
them. Children in the top quartile were much more likely
to agree that robots were more like people than toys.

Finally, we saw differences in the Perception of Robots Ques-
tionnaire between children who performed the best in the
PopBots Al assessments and those who performed the worst
(Figure 15). Of those in the bottom quartile (Cumulative Al
assessment score X = 46.5%), 58% believed that robots were
not as smart (y? = 5.65,p = 0.059) as they were and 53%
of them believed that robots were more like toys than peo-
ple. Comparatively, many more of the children in the top
quartile (Cumulative Al assessment score X = 92.5%) saw
robots more as people than toys (73%; y? = 13.1,p = 0.001**).
Children’s responses in these questions depended on their
ability to understand robots as intellectual others. Children
in the bottom quartile might not have been able to grasp the
robot’s cognition as readily as those in the top quartile which
is most likely the cause of this large difference in perception.

We saw that before and after the PopBots activities, chil-
dren’s previous experiences with robots strongly impacted
their perceptions. Here is a portion of a discussion between
Jane (6-years-old) and Robert (5-years-old) about two robots
that they had seen before. Robert had played on a robot-
shaped jungle gym and Jane had seen a glass robot in a
movie. Although both children had already completed the
PopBots activities at this point, some of their ideas about
robots were still colored by these experiences. In Robert and
Jane’s case, they both thought that PopBots were like toys,
but they had prior experience with larger robots that they
considered real.

Researcher: Are robots toys or are they like people?
Robert: Both because sometimes you can go in it.

Jane: You can’t even go in it.

Robert: Sometimes there’s a ladder and you can climb

and go in it.

Jane: No because it’s made out of glass. And the robot’s
not even real. So you can’t go in it. They’re just toys and
you can only play with them. The only real robots are in
movies.

Researcher: Well, we have robots in my lab.

Jane: But they’re not real robots. Robots like tell you what
to do and [say] whatever you say.

7 DISCUSSION

We felt that it was important to evaluate the PopBots cur-
riculum in classrooms, however, this led to some limitations
with the interpretation of the results. The duration of the ex-
periment was limited due to the needs of teachers. Children
spent at most 15 minutes with each activity before doing
the AI assessments. Another limitation was that children
completed the activities in groups rather than individually.
In the PopBots pilot studies children spent an hour or more
working with each activity and were evaluated individually,
while likely led to a deeper understanding of the material.
In the classroom setting, children’s understanding and per-
ceptions of Al were impacted by who was in their group
and what was going on in the classroom. Working in groups
allowed children to learn and draw conclusions together, but
limits the generalizations we can make about our results.

How did developmental factors, like perspective tak-
ing skills, impact what children could learn about AI?
By taking concepts out of an abstract, mathematical realm
and placing them into hands-on activities that rely more on
social cognition, PopBots was able to help children gain an
understanding of Al algorithms. We saw that most children
understood presented Al concepts as assessed by the PopBots
assessments, with a median score of 70%. There was a slight,
but not significant, difference in age — the median assessment
score for Pre-K children was 63.3% while for Kindergarteners
it was 70.0%.

Given that children needed to develop a mental model of
the robot’s knowledge to understand the PopBots activities,
we hypothesized that children’s perspective-taking skills
would limit how much they understood. We used a Theory of
Mind Assessment similar to that developed by Wellman and
Liu to assess children’s understanding of knowledge access,
content false belief, and explicit false belief [20]. Although
many children had not yet fully developed these Theory
of Mind skills, when children were challenged to leverage
these skills in the PopBots assessment, many still answered
correctly. This was surprising given that children’s Theory
of Mind skills naturally develop with age [20] and we did
not design PopBots activities to help children improve these
skills. Therefore, we believe that children’s understanding



of Al through the mind of the robot, boosted their Theory
of Mind skills.

How did children’s perceptions of “thinking machines"

change after they engaged in educational Al activities?
In a recent study with smart toys and children aged 4-6, we
found that young children were more indecisive than their
older counterparts when deciding whether Al-enabled de-
vices are intelligent, human-like, or adult-like [6]. In the
Perception of Robots Questionnaire pre-test, we saw similar
results — children often responded with "Neutral’ or 'T'm not
sure. Spending time engaging with the PopBots activities
led to less indecision and more differences between children.
We found, as in previous studies, a relationship between age,
how much children understood about robots, and how much
they anthropomorphized them [14]. Pre-K children, unlike
Kindergartners, were more likely to see the robots as toys.
Children in the bottom quartile of performance on the Al
assessments, opposite of those in the top, saw the robots
more like toys and did not consider them very intelligent.

Before and after the PopBots activities, children’s reason-
ing about their answers often referenced fictional robots or
things they “just knew” about robots. These findings are in
line with our previous study on children’s intuitive attri-
butions of intelligence, in which we found that children’s
understandings of robots are strongly impacted by external
influences like their parent’s perspectives [7]. After the Pop-
Bots activities, children’s previous experiences with robots
still had a powerful hold on their perceptions, emphasizing
the importance of early childhood Al education as a means
to help next generation Al citizens to form unbiased beliefs
about Al technology.

8 DESIGN RECOMMENDATIONS

Earlier exposure to “Technology and Engineering". In
the movement towards STEAM in early classroom education,
we should not forget to teach children about technology and
engineering. Before the PopBots activities, a total of 23 chil-
dren out of 80 had experience with computational thinking,
and these children mostly came from one classroom. After
the activities, all children were able to program and build
PopBots themselves, expressing an interest in wanting to
learn more. Innovative toolkits, such as PopBots, that demys-
tify the technology that young children encounter in daily
life are important.

Bring algorithms down to children’s eye level. We
see that children benefit from seeing and tinkering with real
examples of Al that manifest themselves as functional, en-
tertaining, creative, and assistive devices. By opening up the
black box of Al and turning abstract ideas into hands-on ac-
tivities, very young children were able to understand AL We
should build future Al devices that are more transparent and
trainable so that children can more easily relate algorithms

to their own cognition. These kinds of changes will give
children more agency when interacting with smart devices.

Early intervention with sufficient duration. We saw
that young children had fluid ideas about objects that cross
ontological categories (e.g., alive/not alive). Children’s prior
experiences and opinions create strong attitudes that can
persist even after brief exposure to the PopBots platform, as
we found in our work. Therefore, it is important to under-
stand each child’s unique perspectives and expose children
to more information about Al so they can develop an in-
formed understanding. This will require children to be able
to explore Al not only in schools, for a few hours, but also
in their homes. Platforms like Scratch]r. are a good example
of how to bridge this gap [3].

9 CONCLUSION AND FUTURE WORK

In an increasingly Al-powered society, it is important to
consider citizen’s Al literacy — how much do people really
understand AI? Experts have voiced concerns about a global
Al skills gap crisis [17]. In order to lessen the gap, it is im-
portant to democratize who can access and create with Al
We advocate that now is the time to actively work toward
early childhood, inclusive Al education. This work is a novel
step toward Early Al Literacy that proposes hands-on ac-
tivities, workshop design, supporting toolkits, and a set of
assessments on perceptions of Al and Al learning outcomes.
We found that preschool-aged children can learn about Al
concepts through appropriately framed content. Growing
up with such sense of empowerment about Al concepts and
technologies is crucial even for young children as they are al-
ready starting to interact with smart toys and smart speakers
at home.

In the future, we will explore and develop new activities to
expand children’s understanding of Al For example, design-
ing the PopBots to interactively assess children’s learning
and ask questions, and having children program and train
robots with different forms. We also think there is an impor-
tant opportunity to introduce children to the ethical design
of Al, understanding how to design and train systems to ad-
dress bias and promote fairness. Our hope is that this work
is useful to educators and parents, and well as for compa-
nies building Al-enabled products for use by families and
children.
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