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Using perspective taking to learn from ambiguous demonstrations
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Abstract

This paper addresses an important issue in learning from demonstrations that are provided by “naı̈ve” human teachers—people who do not
have expertise in the machine learning algorithms used by the robot. We therefore entertain the possibility that, whereas the average human user
may provide sensible demonstrations from a human’s perspective, these same demonstrations may be insufficient, incomplete, ambiguous, or
otherwise “flawed” from the perspective of the training set needed by the learning algorithm to generalize properly. To address this issue, we
present a system where the robot is modeled as a socially engaged and socially cognitive learner. We illustrate the merits of this approach through
an example where the robot is able to correctly learn from “flawed” demonstrations by taking the visual perspective of the human instructor to
clarify potential ambiguities.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

New applications for robots in the human environment mo-
tivate the need to design robots that can learn from the average
consumer. To address this issue, and inspired by the way people
and animals learn from others, researchers have begun to inves-
tigate various forms of social learning and interactive training
techniques, e.g., imitation-based learning [15], clicker training
[2], learning by demonstration [14], and tutelage [3].

This paper addresses an important issue in building robots
that can successfully learn from demonstrations that are
provided by “naı̈ve” human teachers who do not have expertise
in the learning algorithms used by the robot. As a result,
the teacher may provide sensible demonstrations from a
human’s perspective; however, these same demonstrations may
be insufficient, incomplete, ambiguous, or otherwise “flawed”
from the perspective of providing a correct and sufficiently
complete training set needed by the learning algorithm to
generalize properly.

To address this issue, we present a system where the robot is
modeled as a socially engaged and socially cognitive learner.
First, to build a socially engaged learner, we are inspired
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by human tutelage where the teaching–learning process is
conducted as a tightly interactive collaboration. For instance,
the teacher may first demonstrate a skill as the learner observes.
Then, the learner attempts to master the skill as the teacher
observes. Expressive feedback on the part of the learner
is important to the teacher. The teacher uses this feedback
to model the mental state of the learner—e.g. confusion,
frustration, curiosity, etc. Consequently, the teacher follows
with a refined demonstration specifically tailored to give
meaningful feedback to the learner based on the learner’s
demonstration and expressive feedback. In this way, the teacher
guides the learner’s exploration and the learner guides the
teacher’s instruction to make it more relevant and timely. We
believe modeling this kind of socially engaged process on
robots will support a natural, efficient, and understandable
teaching experience for the human. Further, we believe that this
style of interaction will contribute to keeping the human teacher
engaged and motivated to teach the robot.

Second, we believe that robots will need to be socially
cognitive learners that can infer the intention of the human’s
instruction, even if the teacher’s demonstrations are less than
perfect for the robot. In this case, the robot should clarify
the problematic demonstration if necessary. In the spirit of the
common saying “Do as I say, not as I do”, this capability would
allow a robot to “Learn what I mean to teach”.
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Meltzoff [13] showed that human infants begin to exhibit
the ability to learn from flawed demonstrations at 18 months
of age when they can imitate intended acts. For instance,
the experimenter presented 18 month old infants with a
novel object, a dumbbell, and attempted to show the infants
how to remove one of the ends. Each demonstration by the
experimenter is flawed in that his hand slips off the end as he
tries to pull it apart. However, when the dumbbell is given to the
infant, she correctly pulls the end of the dumbbell off, thereby
interpreting the experimenter’s demonstrations in intentional
goal-directed terms. In addition, the infant will even explore
novel ways to remove the end if simply pulling it off is difficult
(for instance, if the dumbbell is too large for her to hold).

The outline of this paper is as follows. First, we describe
our experimental platform, an expressive humanoid robot called
Leonardo, and a virtual simulator for the robot. Next, we
present our implementation of the robot’s socio-cognitive skills
and the biological inspiration that guides our approach. These
skills allow the robot to not only recognize the actions of the
human demonstrator, but also to infer the human’s goal and
belief states. As in the example of human infants imitating
intended actions, Leonardo interprets human demonstrations
in intentional terms. We then describe our tutelage-inspired
approach to task and goal learning which positions the robot
as a socially engaged learner. We present the implementation
of the robot’s learning mechanisms and communication skills.
Finally, we present how these two capabilities, perspective
taking and task learning, are integrated to model the robot as
a socially engaged and socially cognitive learner, and illustrate
the robot’s ability to learn from “flawed” demonstrations.

2. Platform

The implementation presented in this paper runs on the
Leonardo robot (Leo), a 65 degree of freedom humanoid robot
(Fig. 1). Leo sees the world through two environmentally
mounted stereo-vision cameras. One stereo camera is mounted
behind Leo’s head for detecting humans within the robot’s
interpersonal space. The second stereo camera looks down from
above, and detects objects in Leo’s space as well as human
hands pointing to these objects. Leo can use his eye cameras for
fine corrections to look directly at objects or faces at a higher
resolution. In order to perceive the upper torso pose of a human
interacting with the robot, Leo uses the VTracker articulated
body tracking software developed and generously provided for
our use by the Vision Interfaces group at the MIT Computer
Science and Artificial Intelligence Laboratory.

3. Socio-cognitive skills

Our approach to endowing machines with socially-cognitive
learning abilities is inspired by leading psychological theories
and recent neuroscientific evidence for how human brains might
infer the mental states of others and the role of imitation as
a critical precursor. Specifically, Simulation Theory holds that
certain parts of the brain have dual use; they are used to not
only generate our own behavior and mental states, but also to
predict and infer the same in others. To understand another
Fig. 1. The Leo robot and simulator.

person’s mental process, we use our own similar brain structure
to simulate the introceptive states of the other person [7,8,1].

Inspired by this theory, our simulation-theoretic approach
and implementation enables a humanoid robot to monitor an
adjacent human teacher by simulating his or her behavior
within the robot’s own generative mechanisms on the motor,
goal-directed action, and perceptual-belief levels. Due to space
limitations, we focus our technical presentation on the design
of the robot’s perceptual-belief systems and the simulation-
theoretic mechanisms that reside within it. This grounds the
robot’s information about the teacher in the robot’s own
systems, allowing it to make inferences about the human’s
likely beliefs in order to better understand the intention behind
the teacher’s demonstrations. We refer the interested reader
to [10] for technical details for how our simulation-theoretic
mechanisms are applied to the motor system to enable the robot
to recognize human action, and to the goal-directed behavior
system to infer human intention.

We believe that maintaining mutual beliefs and common
ground in human-robot teaching–learning scenarios will make
robots more efficient and understandable learners, as well as
more robust to the miscommunications or misunderstandings
that inevitably arise even in human–human tutelage [4].

Specifically, in our demonstration, the robot learns the
intended task through a tutelage-style interaction. As the robot
observes the human’s demonstrations, it internally simulates
“what might I be trying to achieve were I performing
these demonstrations in their context?” The robot therefore
interprets and hypothesizes the intended concept being taught
not only from its own perspective, but from the human
teacher’s visual perspective as well. Through this process, the
robot successfully identifies ambiguous demonstrations given
by the human instructor, and clarifies the human’s intent
behind these confusing demonstrations. Once these problematic
demonstrations are disambiguated, the robot correctly learns
the intended task.

4. Belief modeling

This section presents a technical description of two impor-
tant components of our cognitive architecture: the Perception
System and the Belief System. The Perception System is re-
sponsible for extracting perceptual features from raw sensory
information, while the Belief System is responsible for integrat-
ing this information into discrete object representations. The
Belief System represents our approach to sensor fusion, object
tracking and persistence, and short-term memory.
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On every time step, the robot receives a set of sensory
observations O = {o1, o2, . . . , oN } from its various sensory
processes. As an example, imagine that the robot receives
information about buttons and their locations from an eye-
mounted camera, and information about the button indicator
lights from an overhead camera. On a particular time step,
the robot might receive the observations O = {(red button
at position (10,0,0)), (green button at (0,0,0)), (blue button at
(−10,0,0)), (light at (10,0,0)), (light at (−10,0,0))}.

Information is extracted from these observations by the
Perception System. The Perception System consists of a set
of percepts P = {p1, p2, . . . , pK }, where each p ∈ P is a
classification function defined such that

p(o) = (m, c, d), (1)

where m, c ∈ [0, 1] are match and confidence values and d is
an optional derived feature value. For each observation oi ∈ O ,
the Perception System produces a percept snapshot

si = {(p, m, c, d) | p ∈ P, p(oi ) = (m, c, d), m ∗ c > k}, (2)

where k ∈ [0, 1] is a threshold value, typically 0.5. Returning
to our example, the robot might have four percepts relevant
to the buttons and their states: a location percept that extracts
the position information contained in the observations, a color
percept, a button shape recognition percept, and a button light
recognition percept. The Perception System would produce
five percept snapshots corresponding to the five sensory
observations, containing entries for relevant matching percepts.

These snapshots are then clustered into discrete object
representations called beliefs by the Belief System. This
clustering is typically based on the spatial relationships between
the various observations, in conjunction with other metrics of
similarity. The Belief System maintains a set of beliefs B,
where each belief b ∈ B is a set mapping percepts to history
functions: b = {(px , hx ), (py, hy), . . .}. For each (p, h) ∈ b, h
is a history function defined such that

h(t) = (m′t , c′t , d ′t ) (3)

represents the “remembered” evaluation for percept p at
time t . History functions may be lossless, but they are
often implemented using compression schemes such as low-
pass filtering or logarithmic timescale memory structures. For
convenience, we define the attribute function

a(b, p) =

{
1 if (p, h) ∈ b for some h
0 otherwise

(4)

which indicates whether or not a belief contains a history
function for a particular percept.

A Belief System is fully described by the tuple (B, G, M , d,
q , w, c, v), where

• B is the current set of beliefs,
• G is a generator function map, G : P → G, where each

g ∈ G is a history generator function where g(m, c, d) = h
is a history function as above,
• M is a merge function map, M : P → M, where each

m ∈ M is a history merge function where m(h1, h2) = h′

represents the “merge” of the two histories h1 and h2,
• d = d1, d2, . . . , dL is a vector of belief distance functions,
di : B × B → R,
• q = q1, q2, . . . , qL is a vector of indicator functions, where

each element qi denotes the applicability of di , qi : B×B →
{0, 1},
• w = w1, w2, . . . , wL is a vector of weights, wi ∈ R,
• c = c1, c2, . . . , cJ is a vector of culling functions, c j :

B × B → {0, 1}, and
• v is a scalar threshold value.

Using the above, we define the Belief Distance Function D,
the Belief Merge Function R, and the Belief Culling Function
C :

D(b1, b2) =

L∑
i=1

wi qi (b1, b2)di (b1, b2) (5)

R(b1, b2) = b′ = {(p, h) | (p, h) ∈ b1, a(b2, p) = 0}
∪ {(p, h) | (p, h) ∈ b2, a(b1, p) = 0}
∪ {(p, h′) | (p, h1) ∈ b1, (p, h2) ∈ b2,

m = M(p), h′ = m(h1, h2)} (6)

C(b) =

J∏
j=1

c j (b). (7)

The Belief System manages three key processes: creating
new beliefs from incoming percept snapshots, merging sets of
beliefs, and culling stale beliefs. For the first of these processes,
we define the function N , which creates a new belief bi from a
percept snapshot si :

bi = N (si ) = {(p, h) | (p, m, c, d) ∈ si ,

g = G(p), h = g(m, c, d)}. (8)

For the second process, merging sets of beliefs, the Belief
System reduces sets of beliefs by clustering proximal beliefs,
assumed to represent different observations of the same object.
This is accomplished via bottom-up, agglomerative clustering
as follows. For a set of beliefs B:

1: while ∃bx , by ∈ B such that D(bx , by) < v do
2: find b1, b2 ∈ B such that D(b1, b2) is minimal
3: B ← B ∪ {R(b1, b2)} \ {b1, b2}

4: end while

We label this process merge(B).
In the third and final process, the Belief System culls stale

beliefs by removing all beliefs from the current set for which
C(b) = 1. In summation, then, a complete Belief System
update cycle proceeds as follows:

1: begin with current belief set B
2: receive percept snapshot set S from the Perception System
3: create incoming belief set BI = {N (si ) | si ∈ S}
4: merge: B ← merge(B ∪ BI )

5: cull: B ← B\{b | b ∈ B, C(b) = 1}.

Returning again to our example, the Belief System might
specify a number of relevant distance metrics, including a
measure of Euclidean spatial distance along with a number
of metrics based on symbolic feature similarity. For example,
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a symbolic metric might judge observations that are hand-
shaped as distant from observations that are button-shaped,
thus separating these observations into distinct beliefs even if
they are collocated. For our example, the merge process would
produce three beliefs from the original five observations: a red
button in the ON state, a green button in the OFF state, and a
blue button in the ON state.

5. Belief inference and visual perspective simulation

When demonstrating a task to be learned, it is important that
the context within which that demonstration is performed is the
same for the teacher as it is for the learner. However, in complex
and dynamic environments, it is possible for the instructor’s
beliefs about the context surrounding the demonstration to
diverge from those of the learner.

For example, a visual occlusion could block the teacher’s
viewpoint of a region of a shared workspace (but not that of the
learner) and consequently lead to ambiguous demonstrations
where the teacher does not realize that the visual information
of the scene differs between them. For instance, consider
a scenario where the teacher wants to demonstrate how to
assemble a structure. If the teacher incorrectly indicates that
the task has been completed without realizing that part of the
structure remains unfastened, due to having an obstructed view,
the learner may think that fastening that part of the structure
is not relevant to the task. In a teaching scenario, these kinds
of issues may make the human instructor’s demonstrations
“flawed” from the learner’s perspective and lead to learning the
wrong thing.

To address this issue, Leo must establish and maintain
mutual beliefs with the human instructor about the shared
context surrounding demonstrations. Leo keeps track of his own
beliefs about object state using his Belief System, described in
Section 4. In order to model the beliefs of the human instructor
as separate and potentially different from his own, Leo re-uses
the mechanism of his own Belief System. Beliefs that represent
Leo’s model of the human’s beliefs are in the same format as
his own, but are maintained separately so that Leo can compare
differences between his beliefs and the human’s beliefs.

As described in Section 4, belief maintenance consists of
incorporating new sensor data into existing knowledge of the
world. Leo’s sensors are all in his own reference frame, so
objects in the world are perceived relative to his position and
orientation. In order to model the beliefs of the human, Leo re-
uses the same mechanisms used for his own belief modeling,
but first transforms the data into the reference frame of the
human (see Fig. 2). Leo can also filter out incoming data that
he believes is not perceivable to the human, preventing that
new data from updating the human’s beliefs. As you recall,
the sensory observations O = {o1, o2, . . . , oN } are the input
to the robot’s Belief System. The inputs to the secondary Belief
System which models the human’s beliefs are O ′, where:

O ′ = {P(o′) | o′ ∈ O, V (o′) = 1} (9)

where:

V (x) =

{
1 if x is visible to human
0 otherwise

(10)
Fig. 2. Architecture for modeling the human’s beliefs re-uses the robot’s own
architecture for belief maintenance.

Fig. 3. Timeline following the progress of Leo’s beliefs for one button. Leo
updates his belief about the button with any sensor data available. However, Leo
only integrates new data into his model of the human’s belief for that button if
the data is available when the human is able to perceive it.

and:

P : {robot local observations}

→ {person local observations}. (11)

Visibility can be determined by a cone calculated from the
human’s position and orientation, and objects on the opposite
side of known occlusions from the human can be marked
invisible.

Maintaining this parallel set of beliefs is different from
simply flagging the robot’s original beliefs as human visible
or not, because it re-uses the entire architecture which has
mechanisms for object permanence, history of properties, etc.
This allows for a more sophisticated model of the human’s
beliefs.

Fig. 3 shows an example where this approach keeps track of
the human’s incorrect beliefs about objects that have changed
state while out of the human’s view. In this example, the human
sees a button that is ON before it is moved behind an occluding
barrier and turns OFF. Note that Leo’s belief about the button
is that it is OFF but the robot models the human’s belief
about the state of the button as still being ON. In this way,
Leo has an initial set of mechanisms for modeling a human’s
potentially different beliefs. This technique has the advantage
of keeping the model of the human’s beliefs in the same
format as the robot’s own, allowing both for direct comparison
between the two and for operating on these beliefs with the
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same mechanisms that operate on his own. This is important
for establishing and maintaining mutual beliefs in time-varying
situations where beliefs of individuals can diverge over time.

6. The task and goal learning mechanism

In our prior work in task and goal learning, the human
interactively instructs the robot, building a new goal concept
and task model representation from its set of known states,
actions and tasks [3,12]. Each trial yields a number of potential
hypotheses about the task and goal representation. Executing
tasks and incorporating feedback narrows the hypothesis space,
converging on the best representation. We have argued that
flexible, goal-oriented, hierarchical task learning is imperative
for learning in a collaborative setting from a human partner,
due to the human’s propensity to communicate in goal-oriented
and intentional terms. In this work we extend the task and goal
learning mechanism to learn from multiple perspectives.

We have a hierarchical, goal-oriented task representation.
A task is represented by a set S of schema hypotheses: one
primary hypothesis and n others. A schema hypothesis has
x executables E (each either a primitive action a or another
schema), a goal G, and a tally, c, of how many seen examples
have been consistent with this hypothesis.

Goals for actions and schemas are a set of y goal beliefs
about what must hold true in order to consider this schema
or action achieved. A goal belief represents a desired change
during the action or schema by grouping a belief’s percepts
into m criteria percepts and n expectation percepts. Criteria
percepts indicate a feature that holds constant over the action or
schema and expectation percepts indicate an expected feature
change. This allows for a straightforward evaluation of an
action or schema’s goals during execution: for each goal belief,
find all objects with the criteria features and check that the
expectation features match.

Schema Representation:

S = {[(E1 . . . Ex ), G, c]P , [(E1 . . . Ex ), G, c]1...n}

E = a | S

G = {B1 . . . By}

B = pC1 . . . pCm ∪ pE1 . . . pEn .

Additionally, for the purpose of task learning, Leo can take
a snapshot of the world (i.e. the state of the Belief System),
Snp(t, x), in order to later reason about world state changes.
The snapshot pertains to a time step t and can either be taken
from Leo’s (L) or the human’s (H) belief perspectives, indicated
by x .

Learning is mixed-initiative such that Leo pays attention to
both his own and his partner’s actions during a learning episode.
When the learning process begins, Leo creates new schema
representations SLeo and SHum and saves belief snapshots
Snp(t0, L) and Snp(t0, H).

From time t0 until the human indicates that the task is
finished (tend), if either Leo or the human completes an action
act, Leo makes an action representation, a = [act, G], for both
SLeo and SHum:
1: For action act at time tb given last action at ta
2: GL = belief changes from Snp(ta, L) to Snp(tb, L)

3: G H = belief changes from Snp(ta, H) to Snp(tb, H)

4: append [act, GL ] to exectuables of SLeo

5: append [act, G H ] to exectuables of SHum

6: ta = tb.

At time tend, this same process works to infer goals for the
schemas, SLeo and SHum, making the goal inference from the
differences in Snp(t0, x) and Snp(tend, x). The goal inference
mechanism notes all changes that occured over the task;
however, there may still be ambiguity around which aspects
of the state change are the goal (the change to an object, a
class of objects, the whole world state, etc.). Our approach
uses hypothesis testing coupled with human interaction to
disambiguate the overall task goal over a few examples.

Once the human indicates that the current task is done,
SLeo and SHum contain the representation of the seen example
([(E1 . . . Ex ), G, 1]). Having been created from the same
demonstration, the executables will be equivalent, but the goals
may not be equal since they are from differing perspectives.
In the case that they are different, Leo attempts to resolve this
conflict by querying the human in order to choose a single
schema representation S.

The system takes the goal from the human’s schema,
GHum, and creates the set conflicts, the parts of this goal that
are incomplete from Leo’s perspective: ∀B ∈ GHum; ∀b ∈
Leo’s Belief System, if ∃b s.t. b matches criteria percepts
pC1 . . . pCm in B, but does not match all expectation percepts,
pE1 . . . pEn in B, add b to conflicts.

Next, Leo makes a query to the human by making a pointing
gesture towards the object represented by the first belief in
conflicts. This query is meant to communicate, “Do we need
to take care of this, too?” to the human partner. The system
is persistent about the need to resolve the conflict and will
continue to make this query to the human every 45 seconds until
the human responds verbally with “Yes” or “No”.

If the human makes a positive response, Leo assumes that
S = SHum is the representation that the human intended to
teach. Leo then expands the actions to resolve the set conflicts
(i.e. ∀b ∈ conflicts do all actions necessary to make expectation
percepts match GHum), and completes this set of actions.
Otherwise, if the human responds negatively, Leo assumes that
S = SLeo is the correct schema representation.

The system uses S to expand other hypotheses about
the desired goal state to yield a hypothesis of all goal
representations G consistent with the current demonstration (for
details of this expansion process, see [12]). The current best
schema candidate (the primary hypothesis) is chosen through
a Bayesian likelihood method: P(h|D) ∝ P(D|h)P(h). The
data, D, is the set of all examples seen for this task. P(D|h) is
the percentage of the examples in which the state change seen in
the example is consistent with the goal representation in h. For
priors, P(h), our algorithm prefers a more specific hypothesis
over a more general one (as determined by the number of goal
beliefs, and number of criteria and expectation features in those
beliefs). Thus, when a task is first learned, every hypothesis
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Table 1
Social cues for scaffolding

Context Leo’s expression Intention

Human points to object Looks at Object Shows Object of Attention
Executing an action Looks at Object Shows Object of Attention
Human: “Let’s learn task X” Subtle Head Nod Confirms start of task X
Human: “Task X is done” Subtle Head Nod Confirms end of task X
Any speech Perks ears Conveys that Leo is listening
Unconfident task execution Glances to human frequently Conveys uncertainty
Completion of demonstration Perks ears, lean forward Soliciting feedback from teacher
Human: “Can you...?” Perform or Nod/Shake Communicates task knowledge
Human: “Do task X” Performs X Demonstrating hypothesis for X
Task done; Human: “Not quite...” Subtle nod Confirms feedback, expects refinement
Task done; Human: “Good!” Nods head Confirms task hypothesis
schema is equally represented in the data, and the algorithm
chooses the most specific schema for the next execution.

7. Communication for social engagement during teaching
scenarios

Human-style tutelage is a social and a collaborative process
[9,16] and usually takes the form of a dialog, which is
a fundamentally cooperative activity [11]. To be a good
instructor, one must maintain an accurate mental model of the
learner’s state (e.g., what is understood so far, what remains
confusing or unknown) in order to appropriately structure
the learning task with timely feedback and guidance. The
learner (robot or otherwise) helps the instructor by expressing
its internal state via communicative acts (e.g., expressions,
gestures, or vocalizations that reveal understanding, confusion,
attention, etc.). Through reciprocal and tightly coupled
interaction, the learner and instructor cooperate to help the
instructor maintain a good mental model of the learner, and to
help the learner leverage from instruction to build appropriate
models, representations, and associations.

The robot cooperates in the teaching/learning collaboration
by maintaining a mutual belief with the teacher about the task
state, expressing confusion, understanding, attention, etc. A
number of expressive skills contribute to Leo’s effectiveness
in learning through collaborative dialog (Table 1). Eye gaze
establishes joint attention, reassuring the teacher that the robot
is paying attention to the right thing. Subtle nods acknowledge
task stages, confirming a mutual understanding of moving on to
the next stage.

As Table 1 shows, we have given our robot a number
of social and expressive skills that contribute to the robot’s
effectiveness in learning through collaborative discussion. For
example, joint attention is established both on the object
level and on the task structure level. The robot uses subtle
expressions to indicate to the human tutor when it is ready
to learn something new, and its performance of taught
actions provides the tutor with immediate feedback about
comprehension of the task. Envelope displays such as gaze
aversion, eye contact and subtle nods are used to segment a
complex task learning structure in a natural way for the tutor.

These social cues also help to “trouble-shoot” the
interaction. For instance, if the robot is unable to parse the
human instructor’s utterance, Leo gestures by leaning forward
with hand to ear to indicate that it failed to comprehend what
was said, and to prompt the human to repeat their last phrase.

The robot’s demonstration of the task being learned provides
the human instructor with immediate feedback about the robot’s
current task comprehension. When demonstrating a task that it
is currently trying to learn, the robot’s ear pose, body position,
and eye gaze are used to solicit feedback from the human when
uncertainty is high. For instance, the schema hypothesis used
for execution has a likelihood (between 0 and 1) relative to
the other hypotheses available. If this confidence is low (<.5),
Leo expresses tentativeness by frequently looking between the
instructor and an action’s object of attention to solicit feedback
and further examples.

Upon finishing the task, Leo leans forward with his ears
perked waiting for feedback. When the teacher confirms
success through positive verbal feedback, Leo considers the
task complete. Alternatively, if Leo has not yet achieved the
goal, the instructor can give negative verbal feedback. Leo then
expects the teacher to teach him the completion of the task. A
new example is created through this refinement stage, similar to
the original learning process.

8. Demonstration and discussion

In our experimental scenarios, a human instructor can teach
Leonardo a variety of tasks involving a set of colored buttons
[3,12]. The buttons can be pressed ON or OFF, switching an
internal LED so that the robot can visually perceive if the
button has been “activated” or “deactivated”. Tasks involve
learning specific patterns of button activation and deactivation,
or learning concepts that represent new task goals (e.g.,
generalizing what it means to turn all the buttons on for any
number of buttons in the workspace).

In this work, we explore two issues in the teaching scenario.
First, the interaction consists of mixed-initiative demonstrations
by both human teacher and robot learner. The human can
demonstrate actions on objects for the robot to learn from, or
verbally and gesturally direct the robot in what to do for each
trial. Second, we explore socio-cognitive issues that arise in
teaching the robot a new task. In particular, we explore the
case where the perceived context is different from the human’s
perspective than from the robot’s.
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Fig. 4. Task Scenario. As Leo learns “turn all the buttons on”, he considers the task from both his own and the human’s perspective. Since the examples Leo has been
given result in different task models depending on whether he considers the scenario from his perspective or the human’s, he asks for clarification when requested
to “turn all the buttons on” to determine which task model the human was intending. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
In general, how to handle and resolve “misconceptions” is a
significant issue in developing collaborative systems capable of
goal inference and plan recognition [5]. In this paper, we look
at how misconceptions might arise in a collaborative teaching
scenario, giving rise to “flawed” demonstrations. This causes
the robot to entertain multiple, conflicting hypotheses in its
attempt to infer what the human is trying to teach it to do. The
robot must therefore be able to recognize when misconceptions
are present and be able to collaborate with the teacher to resolve
these problems in order to learn the intended task.

Fig. 4 depicts a scenario that demonstrates our mixed-
initiative learning interaction. In this scenario, we start with
four colored buttons (1 red, 2 blue, and 1 green) that the
robot and human can press ON or OFF. The human and robot
are positioned on opposite sides of the shared workspace. In
addition, there are two occluding barriers in the workspace.
Both blue buttons are occluded from the human (H), but not
from Leonardo (L).

In this scenario the human teaches Leo the task: “turn all
the buttons on”. In the first trial, having asked if Leo knows
how to do the task and received a negative answer, the human
offers to teach Leo the task and then demonstrates the one
action necessary to complete the task. The learning mechanism
begins a learning process for two schemas, one based on Leo’s
perspective and one based on the human’s perspective. Leo
infers the goal for the schema based on the differences over the
task. In both the human’s and Leo’s schema, the most specific
schema for the task is to press this green button ON. In the
human’s schema, there is also some nonzero probability that
the task is to press any button ON, but since Leo can see that
the hidden blue buttons are OFF, he does not consider this
hypothesis for himself. However, he does consider to press any
button we both see ON as a possible schema for this example
that accounts for the mutual evidence presented so far.

In the second trial, Leo uses his new schema representation
to try and complete the task, pressing the green button ON.
Leo looks back to the human, nodding to signal that he thinks
the task is done, with ears perked to elicit feedback, since
he is not confident he has learned the task (other hypotheses
are being entertained). The human says, “Not quite”, and Leo
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understands this as negative feedback and waits for further
instruction or demonstration for refinement of his hypothesis.
Leo watches the human’s demonstration, recognizes the action,
infers goals for this action based on both his beliefs and the
human’s, and modifies the schemas for this task, updating
the most confident hypothesis, given this second example.
Now, from the human’s perspective, the most likely hypothesis
schema is to press any button ON. But from Leo’s perspective,
this hypothesis does not match the evidence he has seen, so his
best schema is press the buttons we can both see ON.

The learning mechanism then starts a process to resolve
these two conflicting schemas. The process determines that if
Leo were to use the human’s schema in his current perspective,
there are still two (hidden) buttons that remain undone. Leo
acts to resolve this ambiguity by pointing to one of the hidden
blue buttons and looking to the human with a questioning
expression. The human takes down the barrier and confirms that
these are part of the goal. Leo updates his hypothesis based on
this observation to the shared hypothesis schema of press any
button ON. He completes the task by pressing the remaining
blue button.

This example is in a low-dimensional feature space and
little data is needed to resolve the ambiguities, but even here
the advantage of the tutelage paradigm is shown. Through a
turn-taking interaction with a human partner, the robot quickly
acquires the representative examples needed to generalize to
the correct task representation. The robot’s expressions and
demonstrations of learned abilities help the teacher understand
what the robot knows and what ambiguities remain. The
robot is able to detect and resolve potentially ambiguous
demonstrations, and resolves these collaboratively with the
human to maintain mutual belief as to the generalized meaning
of the intended concept to be learnt.

9. Conclusion

We have presented an architecture for a robot that learns
simple tasks from flawed or ambiguous demonstrations by
taking the perspective of the teacher. Assuming the perspective
of the teacher allows the robot to guess the human’s goals even
if the human fails to properly achieve them.

In many cases where the robot and human have different
knowledge about the world, the human could be attempting to
teach the robot with incomplete information. In the example
given here, the human thinks that she is teaching Leo the
concept of “turn on all the buttons”. However, since the
human does not see all the buttons, the human is not
correctly demonstrating the actions to the robot. Based on
his perspective-taking abilities, Leo can model this error and
understand the human’s intent without any correct examples.

This same technique helps with many kinds of failed
teaching scenarios. Imagine a human attempting to activate a
push control, mistaking it for a twist control. If Leo could model
this false knowledge, then he could determine that they meant
to activate the control by pushing it even though he has never
seen it happen.
We believe that perspective taking is an important part of
creating an intuitive learning interaction with a human. Others
have argued that it is critical for collaboration on a shared
task in a physical space [6]. In our collaborative learning
scenario, the robot has the advantage of having a human teacher
who is attempting to teach the robot a particular skill as best
they can with the information they have. It is important to
make use of this situation to learn as much as possible. The
architecture presented here takes advantage of the presence of
the helpful human by learning in an interactive setting that
allows the human to correct errors in the task model of the robot
immediately as they happen, allowing the robot to more easily
determine the specific task error and learn from few examples.
Further, the robot’s ability to take the perspective of the human
to learn from their intent instead of their raw actions allows the
robot to make use of well-intentioned but flawed or ambiguous
examples.
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