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Abstract—This paper describes a novel approach for focusing
the search for victims of a rescue robot in an unknown environ-
ment. Such a rescue operation under time constraints is driven
by three opposing factors, namely the need to explore unknown
territory, the requirement to maintain robot localization perfor-
mance as well as map quality in the face of uncertainty, and the
need to target the search to areas where victims are likely to be
found.

Key to our approach is to leverage knowledge from victims on
the ground to focus and direct the search process. We assume that
victims possess useful knowledge about where potentially other
victims reside and integrate these directions with a principled
exploration mechanism for particle filter-based simultaneous
localization and mapping (SLAM). This paper includes a set of
proposed evaluations in simulation and on a real robot that aim
to validate whether gestural directions can optimize the search
for victims when operating under time constraints.

We see this work as a first step towards enabling future
applications in search and rescue where humans and robots
collaborate in the same physical space to search for victims.

I. INTRODUCTION

In this paper we address the problem of goal-directed
mapping of an unknown environment. Specifically, our focus is
on rescue applications where a single ground robot is deployed
in an unknown space and tasked to find as many victims
as possible within a fixed time interval. The result of this
operation should be a high-quality map of a subset of the
environment with marked victim locations that can then be
supplied to first responders entering the perimeter.

There are a number of challenges implicit in this task
description that a successful algorithm needs to address. At the
core lies a simultaneous localization and mapping (SLAM)
problem: a quality map presupposes a good localization
estimate but the latter in turn relies on the quality of the
map hypothesis. This problem is one of the most studied in
the robotics community and a number of landmark-based
and occupancy grid-based SLAM algorithms have been
demonstrated in recent years to address this interplay (see e.g.
[9, 8, 10]). SLAM algorithms generally function as a passive
recipient of sensor data and have no direct control over the
trajectories that the robot is traversing in the environment.
Research in active exploration for single and multiple
robots has shown that the exploratory behavior affects the
localization performance largely and seek to optimize it
according to different metrics (e.g. [1], [13], [14], [15]).

A well-known fact in this context is that loop-closing, i.e.
revisiting already visited poses, can lead to a major reduction
in the localization uncertainty, for example.

In the search and rescue community, autonomous victim
finding is often treated as a by-product of good exploration
of the entire unknown area and any implicit time constraints
ignored (e.g. [17]). Given that our scenario calls for purposeful
and time-constrained exploration, we seek to minimize the
time the robot spends exploring areas where victims are
unlikely to be found. At the same time we acknowledge that
some time commitment, such as due to loop-closing, may
still be required to sustain localization and map quality. An
optimal result for our purposes would be a high-quality map
of a subset of the entire unknown space that links all victims
in the area and includes little needlessly explored space.

The key contribution of this paper is a method to utilize
knowledge extracted from victims on the ground in a princi-
pled and directed exploration mechanism to focus the search
for victims in the rescue domain. The main assumption is
that in a rescue scenario people are likely to possess valuable
knowledge of where potentially other victims are located. A
human that is found in an office could, for example, direct the
robot to another office down the hall so that a costly detour
of the robot can be avoided. This work can be summarized
as a SLAM problem with human-in-the-loop exploration and
joins elements of classical robot mapping and planning with
elements from human-robot interaction (HRI). In essence, our
proposed solution embeds people detection and gesture recog-
nition in the information-guided exploration process within a
SLAM setting implemented as a Rao-Blackwellized particle
filter (RBPF, see [8]). While human communication in the
presented work is limited to gesture interpretation, the work
extends to more sophisticated modes of interaction, such as
language-based direction giving [19, 7].

Our proposed experiments in simulation and on a physical
robot aim to quantify to what extent and under which
conditions exploiting knowledge from victims on the ground
can lead to speed-ups of the search process and increase the
number of victims found in the allotted time.

The paper commences with a presentation of the adopted



occupancy grid SLAM and information-guided exploration
methods in Section II. We then present our approach of human-
in-the-loop exploration in Section III and give a detailed
outline of the algorithm and the implementation. In Sections
IV we conclude with a proposed evaluation of our approach
in simulation and on a physical robot.

II. ACTIVE EXPLORATION IN SLAM

We now briefly introduce the SLAM method that we utilize
in our implementation and then turn to one active exploration
scheme that we extend in the following section of the paper.

A. Occupancy Grid SLAM

The RBPF ([11, 8]) is an implementation of the full
SLAM problem that estimates p(x1:t,m|z1:t, u1:t), the joint
distribution over the entire robot path and the map, given
sensory observations (such as laser scans) up to time t, z1:t,
and control signals (such as odometry readings) u1:t. Rao-
Blackwellization uses the following factorization

p(x1:t,m|z1:t, u1:t) = p(m|x1:t, z1:t)p(x1:t|z1:t, u1:t)

which decouples the trajectory estimation problem (second
factor) from the map computation (first factor).

Occupancy grid maps represent the map as an evenly
spaced field of binary random variables corresponding to the
occupancy at that location. Estimating the posterior over grid
maps given the assumed known path x1:t corresponds to a
mapping with known poses problem and can be solved by
assuming independence between map cells mi and by utilizing
an inverse laser sensor model p(mi|zt, xt) to update the
occupancy at each cell with incoming sensor readings ([16]).
Rather than recording raw sensor readings, this probabilistic
representation accounts for the inherent sensor noise and can
filter out moving obstacles such as people.

For the path estimation problem in the second factor above,
the RBPF uses a non-parametric implementation of the Bayes
filter equations based on a set of M particles with associated
weights, each representing a path hypothesis for the robot
up to time t. In our planar setting, the robot path consists
of a set of poses xt = (x, y, θ) denoting 2D location and
heading. The particle filter equations define a recursive rela-
tionship between the particle set for p(x1:t−1|z1:t−1, u1:t−1)
and p(x1:t|z1:t, u1:t) consisting of a sampling from a proposal
distribution (prediction step in the Bayes filter), particle weight
updates (correction step), and an adaptive importance sampling
step.

In summary, the RBPF maintains a set of path hypotheses
each associated with a stochastic map representation stemming
from that path. They represent a practical solution to the
SLAM problem and have been applied to occupancy grid
maps and landmark-based representations alike in recent
years [8].

Left out in the description above is the exact procedure of
how robot movement should be planned through an unknown
environment. This is the topic of active exploration and

Fig. 1. The expected map (EM) in a RBPF with path hypotheses from each
particle overlaid. Image is due to [1].

existing approaches aim to reduce uncertainty in the robot pose
[13], map [20], or both [15]. The method we adopt here is the
combined measure of [1] which we now briefly introduce.

B. Active Exploration

Active exploration methods select robot actions that increase
knowledge about the world as defined by some cost function
that commonly trades off a measured benefit in knowledge
gain with the incurred cost to achieve it [16]. A popular and
principled approach is based on the entropy of the posterior
path or map distributions and chooses actions to minimize this
value [15].

For the work in this paper we use the information of
the expected map (EMI) as an uncertainty measure of the
RBPF which considers both robot path and map while avoid-
ing some pitfalls that can occur when computing entropy
of an occupancy grid map directly [1]. The expected map
p(EM |z1:t, u1:t) of a RBPF is defined as the result of in-
tegrating out the path from the map posterior:

p(EM |z1:t, u1:t) =
∫
p(m|x1:t, z1:t)p(x1:t|z1:t, u1:t) dx1:t

In the case of occupancy grid maps under the usual inde-
pendence assumptions this corresponds to a weighted sum of
the occupancy likelihoods at each grid cell across all particles
(see Figure 1). This serves as a both intuitive and principled
measure of mutual consistency between the individual map
hypotheses in a RBPF.

The information of an occupancy grid map, I , is defined
as the sum over all I(mi) := 1 −H(mi) computed for each
grid cell i. Here, H(mi) is the entropy (measured in bits)
of the binary random variable denoting occupancy at cell i.
Intuitively, I measures the information content of the map
with certain occupied or empty cells contributing maximally
to the sum while unexplored areas (with a prior probability
of occupancy of 0.5) do not contribute at all. Applying the
information measure I to the expected map of a RBPF above
results in an uncertainty measure (EMI) for the entire RBPF
with demonstrated advantages over other measures such as the
effective sample size Neff [1].

With the definition above there are two ways of gaining
information in the EM of a RBPF, namely to reduce the map
“blurriness” by closing a loop or by extending the mapped
area into previously unexplored space. The EMI assigns a
value to both of those options but favors loop-closing actions



Fig. 2. People detection and gesture recognition from ground robot. From left to right: person recognition, depth image extraction and 3D model fitting.
The direction vector is mapped into the robot’s coordinate frame as detailed in Section III.

when the pose estimate is uncertain.

Embedded into an exploration framework this method al-
lows to assess different candidate actions of the robot. Previous
work generates a set of random sample locations around the
robot and chooses the one that maximizes the expected gain
in EMI as the next target for exploration. Our contribution
instead gives humans an active role in the exploration process,
allowing gestural directions to steer the robot towards salient
locations in the unexplored space. Our method is detailed in
the following section.

III. HUMAN-IN-THE-LOOP EXPLORATION

In the scenario we are considering, a rescue robot’s core
task is to find as many victims as possible in the allotted time
and to report back with a quality map that indicates a path to
the recorded victims. Underlying the approach presented in
this paper is the assumption that knowledge from humans in
the same physical space can be leveraged to focus the search
for victims in the unknown environment. The question we
seek to address in a principled way is how and when the
robot should utilize human input and when other factors, such
as maintaining good localization, should take precedence
during search.

The usefulness of victim interaction during search is directly
dependent on two factors, namely the capability of the robot
to extract useful information from humans as well as the
appropriate usage thereof. The first is best described as a
human-robot interaction (HRI) problem [2]. In our current
implementation detailed below we limit the interaction to
interpretation of gestural directions from the victims. We
note, however, that a vast amount of literature on intention
recognition (e.g. [7]) or direction understanding (e.g. [19])
applies in principle.

To address the second factor, we embed human directions
in a principled exploration mechanism that utilizes the EMI
measure introduced in the previous section. Candidate ex-
ploratory actions are sampled along human direction vectors
but traded off against “safe” loop closing actions according
to their EMI value. Rather than following directions blindly,
the robot maintains enough autonomy to guard itself against

wandering off into space where localization performance may
not be maintainable.

We now outline our approach for recognizing gestural di-
rections before describing our exploration algorithm in detail.

A. Gestural direction understanding
Our recognition pipeline for gestural directions consists of

two parts. First a pointing gesture is extracted from a human
victim which is then translated into a direction vector in the
robot’s coordinate frame. Second, a probabilistic interpretation
of direction is overlaid on the currently built EM of the RBPF
to define a search space derived from the observed gesture.

1) Gesture recognition: Gesture recognition is part of an
interaction that is initiated whenever a human is detected in
the ground robot’s field of view. For human detections with a
monocular robot-mounted camera we use the histogram of ori-
ented gradients (HOG) descriptor and a linear SVM classifier
[3]. We currently employ the real-time GPU implementation
and trained SVM classifier of [12] successfully with standing
and sitting humans.

Humans are assumed stationary for the interaction that is
now initiated. Through an on-board speaker the robot asks the
human to point in the direction of more victims if known. At
the same time, an on-board 3D time-of-flight camera records
depth information in the field of view of the robot. Based
on optical flow in the camera image we forward point clouds
corresponding to “stationary” images to a 3D model fitting
algorithm to overlay a 3D model on the depth data. The optical
flow criterion reduces the number of poses to evaluate but
assumes that a directional gesture is held for a short amount
of time.

We define a 3D articulated model (see Figure 2) by a set
of limbs connected to each other by rotational joints. We
parameterize pose as θ = (C, φ1, ...φM ), where C is the 3D
torso location and φ1, ..., φM is the set of articulated angles.
The dimension of θ is 20.

Similar to [4, 5], we estimate articulated pose by minimizing
a fitting error function E(θ) based on the distance between a
3D human model and the recorded 3D points. Minimization is
performed using a variant of the Iterative Closest Point (ICP)
algorithm to register articulated objects.

To achieve robust estimation, we employ a multi-hypotheses
framework similar to [6] and reduce the search space through



Fig. 3. Human direction likelihood field modeling the distribution over victim
locations given a vertical direction vector (left). Likelihood field overlaid on
current map (with distance cutoff) (right).

constraints on the poses θ reachable by the human body. Model
fitting stops when E(θ) is below a threshold or a fixed number
of ICP iterations has been reached. To speed up the model
matching process at each ICP iteration, we have implemented
different algorithms including kd-trees and exhaustive search.
The overhead due to the construction of kd-trees makes them
too slow in practice and we achieve highest performance with
a GPU-implementation of exhaustive search.

2) Direction interpretation: The model fitting process yields
a direction vector that can be mapped directly into the robot’s
reference frame based on the current position and heading
estimate. To account for inaccuracies in human directions
(especially in an emergency scenario) we seek a proba-
bilistic interpretation of gesture if a directional vector was
obtained in the previous step. Specifically, we are interested
in p(victim|xt, ~d,mt), the distribution over victim locations
given xt, the position of the direction giver, ~d, the indicated
direction, and mt, the map built so far during SLAM.

Our model is inspired by other sensor forward models (such
as for laser or sonar scanners) from the robot localization and
mapping literature, specifically the likelihood field described
in [16]. We define the density as

p(victim|xt, ~d,mt) = εσ(dist)

where ε denotes a Gaussian centered on the direction vector
with growing variance away from the direction giver. Unlike
the sensor model for laser and sonar scanners there is no
obvious “cut-off” because we do not obtain a distance estimate
from the direction giver.

Note that the algorithm we describe in the following section
only requires us to sample from this distribution in order
to select candidate locations to explore. Figure 3 shows the
direction model both individually and superimposed on a
partially explored map. In the left image, the lighter a location
appears, the larger p(victim|xt, ~d,mt). In the exploration
algorithm we introduce next, our probabilistic interpretation
of direction is overlaid on the currently built EM of the RBPF
to define a search region from the observed gesture.

B. Integrated exploration algorithm

In this section we describe how gestural directions come
together with the previously outlined information measure to

form an integrated framework for human-directed exploration
in a RBPF. In our approach we follow the basic framework of
[15]:

1. Generate a set of sample target locations around the robot
using the most likely map of the RBPF.

2. Predict the observations along the path to each target and
integrate them into a copy of the original RBPF.

3. Determine the information gain between each candidate
and the original RBPF.

4. Choose the target location which results in the highest
expected gain in information.

The final target that the robot navigates to trades off path
length with expected information gain. In our scenario, the
process above iterates until a fixed time has elapsed.

Our version of the exploration scheme is outlined in Al-
gorithm 1 below. The key difference is the role that human
directions play in the search. In line 6, a set of candidate
targets is sampled from p(victim|xt, ~d,mt) projected on the
current EM of the RBPF. We draw from this posterior by first
sampling a distance dist along the direction vector and then a
displacement from the Gaussian εσ(dist) ensuring that it falls
into the boundaries of the EM.

Line 11 computes the Utility of a candidate target. Utility
is defined as expected information gain minus path cost. The
latter is proportional to the path length but weighted by it’s
likelihood under p(victim|xt, ~d,mt). The likelihood field is

Algorithm 1: Human-in-the-loop exploration
Input: RBPFt the current RBPF at time t

1 initialize likelihood field to uniform random across map;
2 while search time has not elapsed do
3 update RBPFt with current sensor readings;
4 if robot is not navigating then
5 get most likely particle and grid map;
6 sample k potential targets from likelihood field;
7 foreach target i do
8 RBPF (i)← RBPFt;
9 update RBPF (i) with simulated observations

along path to target;
10 compute EMI(i), the EMI of RBPF (i);
11 compute Utility(i);
12 end
13 begin navigating to target with highest utility;
14 decay likelihood field to uniform random;
15 else
16 proceed to current target;
17 end
18 if human is detected in field of view then
19 stop navigating;
20 update likelihood field from direction vector;
21 end
22 end

decayed towards a uniform distribution in line 14 every time



a new target location is drawn to avoid the robot following
false or obsolete directions for too long.

Note that in our current implementation the robot keeps
track of previously recorded victim locations. Querying for
directions only takes place when a victim at a particular
location is first encountered.

IV. PROPOSED EVALUATION

In this section we outline the proposed experiments for the
human-in-the-loop exploration mechanism described above.

The efficiency of the search for victims with our algorithm
is largely affected by two factors, namely i) the accuracy
of the human gestures, and ii) the accuracy of the direction
extraction, which is in turn based on the human detection
and gesture recognition performance. In the following, we
suggest to evaluate our approach in a simulation setup as
well as on a physical robot. The first allows us to abstract
away the complexities associated with human detection and
direction extraction and to assess the performance of the algo-
rithm under varying accuracy of the human direction vectors.
The second evaluation concerns the integrated algorithm and
compares the performance with other exploration schemes in
a more realistic setting.

Of particular interest to us is what the minimum accuracy of
human directions must be in order for the algorithm to perform
better than simpler exploration mechanisms that do not rely
on human input.

A. Experimental setup

The implementation of our algorithm extends an existing
and openly available implementation of the RBPF SLAM algo-
rithm, GMapping1. Enabling GMapping for active exploration
required us to add computation of the EM and EMI (for target
destination selection), a laser raycasting module (to simulate
experience along the path to each candidate destination), and a
navigation module (to drive to the selected destination points).
In our implementation, navigation is handled by the freely
available Carmen toolkit2.

For the evaluation on the physical robot we also integrated
the HOG-based person detector of [3] and the gesture recog-
nition method of [6] into our robot control software.

In the following two sections, we contrast our algorithm
against two other popular exploration methods that do not
include a human in the loop, namely a frontier-based [18]
and the original EMI-based [1] exploration methods.

B. Simulation setup

The first evaluation will be carried out in the USARSim
simulation environment. The key assumption to our work is
that victims possess useful knowledge about where potentially
other victims reside so that the exploration process can be
targeted accordingly. In this experiment, we evaluate our
algorithm’s reliance on the accuracy of human directions.

1See http://www.openslam.org/gmapping.html.
2See http://carmen.sourceforge.net.

Fig. 4. Used map for simulation: 2006 RoboCup Rescue office environment.

Our procedure is as follows: we introduce a single parameter
k that summarizes the correctness of victim directions as well
as the robot’s ability to extract the direction vector. Whenever
the robot reaches a victim (whose locations in the simulation
are known exactly), the likelihood that the correct direction
vector is made available to the robot is k whereas a random
direction vector is returned with a probability of 1 − k. By
varying k, we will find the minimum required accuracy for our
algorithm to outperform frontier exploration and the default
EMI-based method. Performance is assessed based on the
number of victims found in a fixed time interval.

The map we use during this part of the evaluation is the
office environment from the 2006 RoboCup Rescue competi-
tion and is shown in Figure 4. Repeated measurements will be
taken and victim positions varied from one run to the next.

C. Application to real-world data

The evaluation of the algorithm on physical hardware is
carried out on a mobile robot in our lab (see Figure 5). The
robot’s task is to find five human victims (either standing
or sitting on the ground) in a planar in-door environment as
quickly as possible.

Fig. 5. The “iPuck” robot with laser scanner, Microsoft Kinect depth camera,
and on-board Intel Atom PC.

Different from the evaluation in simulation above, per-
formance of the algorithm is now also dependent on the
human detection and gesture recognition performance. For
this part of the evaluation we will first collect a dataset
of representative human configurations (standing, sitting, and



pointing in different directions) and evaluate the performance
of each classifier in isolation. Second, the integrated algorithm
will be executed and compared to frontier- and EMI-based
exploration according to the “number of victims found in a
fixed interval” criterion.
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