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ABSTRACT
Incorporating human interaction into agent learning yields
two crucial benefits. First, human knowledge can greatly im-
prove the speed and final result of learning compared to pure
trial-and-error approaches like reinforcement learning. And
second, human users are empowered to designate “correct”
behavior. In this abstract, we present research on a system for
learning from human interaction—the TAMER framework—
then point to extensions to TAMER, and finally describe a
demonstration of these systems.
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OVERVIEW
Software-based control systems are often deployed in the
service of end users that lack programming skills. Ex-
amples of these control systems (i.e., autonomous agents)
include autonomous vehicles, personal robots, and game-
playing agents. This abstract describes research on TAMER,
a general framework (Figure 1) for control algorithms that
learn from real-valued signals of user approval and disap-
proval (i.e., reward) through simple human-machine inter-
faces that do not require technical expertise on the part of
the user. These algorithms provide two distinct benefits: (1)
giving general users the ability to specify correct behavior for
a control system and (2) incorporating available human task
expertise to increase learning speed on tasks with predefined
objective functions. This work makes progress towards an-
swering the open question of how best to learn from human-
generated reward, a potential source of guidance that will be
abundant for many robots through social cues such as smiles
and attention. The work to be demonstrated has resulted in a
number of publications [5, 7, 2, 4], including the 2010 Best
Student Paper at AAMAS [3], a 2012 finalist for the CoTeSys
Cognitive Robotics Best Paper award at Ro-Man [6], and a
paper at IUI this year [8].
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THE TAMER FRAMEWORK
The TAMER framework models a human’s internal feed-
back function and chooses actions that maximize human re-
ward as predicted by the current model. TAMER applies to
both robotic and simulated agents. On multiple tasks, we
have shown that TAMER agents can learn more quickly—
sometimes dramatically so—than their more traditional coun-
terparts, which specifically are tabula rasa agents that learn
from a predefined evaluation function instead of human in-
teraction. On Tetris for example (see Figure 2(a)), TAMER
agents reached a mean performance of 50 lines cleared per
game in less than 5 games of training, a visually impressive
level of play that human-free algorithms required tens or hun-
dreds of games to reach. Further, the TAMER framework
gives primacy to the desires of human trainers—learning
only from these trainers—many of whom had no program-
ming skills. Thus, TAMER is well suited for fitting robotic
behaviors to an individual’s unique demands, empowering
those without programming skills to specify correct behav-
ior. TAMER has been successfully implemented on the robot
Nexi to teach interactive navigational behaviors such as fol-
lowing and avoidance of the trainer (Figure 2(b)).

As shown in Figure 1, TAMER breaks the process of learning
behaviors from live human reward into three modules, mak-
ing contributions to the design of each:
1. credit assignment, where delayed human reward is ap-

plied appropriately to recent events;
2. regression on experienced events and their consequential

credited reward to create a predictive model for future
reward; and

3. action selection using the model of human reward.
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Figure 1. Conceptual diagram for the TAMER framework.
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Figure 2. Task domains to be demonstrated with TAMER agents: Tetris
and interactive robotic navigation

TAMER differs from traditional reinforcement learning (RL)
algorithms—generally powerful algorithms that cannot be
naively applied to human-generated reward [6]—in multi-
ple ways. For instance, human reward is delayed from the
event that prompted it, and TAMER acknowledges this de-
lay, absent in traditional reinforcement learning, and adjusts
for it. And importantly, whereas RL algorithms attempt to
maximize their accumulation of reward over the long-term,
TAMER algorithms focus only on reward caused directly
by immediate action. Thus when acting greedily, TAMER
chooses the action expected to elicit the most reward within
the current state. This myopic, shortsighted approach is akin
to the relatively hedonistic way that pets and young children
decide between options.

In recent research [6], we found that designing algorithms for
learning from human reward is much easier with a myopic
approach. We also investigated other projects with human re-
ward and found that all five known projects were also myopic,
though to a lesser extent than TAMER [1, 13, 12, 11, 9, 10].

A disadvantage of myopia is that it puts more of a burden
on the trainer; the trainer must micromanage the agent’s be-
havior. RL algorithms that seek long-term reward have op-
posite properties: they are easier on the trainer—when they
work—but harder to design. The IUI paper by Knox and
Stone [8] takes first steps toward non-myopic learning from
human reward—to our knowledge, describing the first suc-
cessful non-myopic approach to be published for any task. As
it stands, TAMER is currently better at many complex tasks
than the best non-myopic learning algorithms, and even as we
move toward more farsighted learning, TAMER stands as the
foundation on which we base our algorithms.

A DEMONSTRATION OF TAMER
We will demonstrate both TAMER and some non-myopic al-
gorithms that build upon TAMER and are investigated in our
IUI paper [8]. The demonstration will consist of simulated
agents that can be trained interactively by conference atten-
dees. We expect to demonstrate TAMER on Tetris and to
teach interactive robot navigation tasks using a simulation of
the robot Nexi. Attendees will use a presentation remote to

deliver reward and punishment to the agents, which will be
shown on a large display. Attendees are free to teach quite
opposite behaviors. Nexi, for example, can be taught to fol-
low a trainer’s avatar or to avoid it. Video of training the real
robot will also be shown. The non-myopic algorithms will be
demonstrated on a simple grid-based navigation task.

SUMMARY AND VISION
This research constitutes a deep investigation into how agents
should learn from human reward. TAMER is currently the
only general framework prescribing how to learn exclusively
from human reward. Whereas learning behavior from humans
is currently dominated by demonstration-based approaches,
TAMER helps establish a second major form of teaching,
well grounded as a known teaching mechanism in humans
and other animals.

We envision that the TAMER framework and related algo-
rithms will empower human users to teach behaviors and im-
prove their understanding of the agents through the interac-
tivity of teaching. TAMER additionally is one of a num-
ber of approaches that can accelerate learning, which must
be accomplished for assistive learning agents to be deployed
widely.
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