
ABSTRACT 
People are increasingly working with robots in teams and 
recent research has focused on how human-robot teams 
function, but little attention has yet been paid to the role of 
social signaling behavior in human-robot teams. In a 
controlled experiment, we examined the role of 
backchanneling and task complexity on team functioning 
and perceptions of the robots’ engagement and competence. 
Based on results from 73 participants interacting with 
autonomous humanoid robots as part of a human-robot team 
(one participant, one confederate, and three robots), we 
found that when robots used backchanneling team 
functioning improved and the robots were seen as more 
engaged. Ironically, the robots using backchanneling were 
perceived as less competent than those that did not. Our 
results suggest that backchanneling plays an important role 
in human-robot teams and that the design and 
implementation of robots for human-robot teams may be 
more effective if backchanneling capability is provided. 
Author Keywords 
Affect; human-robot interaction; human-robot teams; team 
performance; urban search and rescue. 

ACM Classification Keywords 
I.2.9; K.4.3.   

INTRODUCTION 
Robots are part of high-stakes search and rescue operations 
[36], high-risk surgeries [25], and exploration missions. 
With ever-increasing capabilities, autonomous robots are 
becoming an integral part of professional and operational 
teams as people try to extend human capabilities. A 
burgeoning human-robot interaction research agenda is 
exploring the dynamics of human-robot teams with the goal 
of understanding more about how to enable coordination 
between people and robots [15, 44]. To date, this research 
has primarily focused on cognitive aspects of team 
functioning such as the development of situational 
awareness [37], common ground [48], task coordination [27, 
44], and decision making. 

The role of subtle social signaling behavior in facilitating 
human robot teamwork, however, remains underexplored 
despite encouraging initial research highlighting the need for 
robots to be more adept at social interaction. By social 
signaling behaviors we mean behaviors that do not have 
their primary role in communicating content but rather in 
coordinating (e.g. when is it appropriate to speak?) and 
orienting (e.g. status and affect) participants of an 
interaction. By studying robot supported rescue teams in the 
field, the need for robots to have social interaction 
capabilities became evident when Fincannon et. al., [22] 
observed that rescue specialists engaged in social 
interactions with the robots even though the robots were not 
designed with social signaling capabilities. Bethel and 
colleagues [5, 6] proceeded to explore how robots without 
human-like social interfaces could exhibit socio-emotional 
behavior. Additional studies have demonstrated the 
powerful effects that simple social signaling behaviors can 
have in human-robot interaction. Only slight orientation 
towards a person, for example, can indicate attentiveness 
and caring [7, 11, 23]. The human-robot interaction 
community has so far primarily focused on how this 
signaling makes people think and feel about the robot itself 
[6], often with the goal of improving communication 
between the person and the robot. The primary goal of this 
research has been to make robots more understandable, 
intuitive, and predictable (or “believable”) by using patterns 
that allow people to apply mental models and heuristics 
from interactions with people to infer a robot’s internal 
states and intentions [9, 10, 24, 38, 42].  

With the exception of two studies, the role of social 
signaling in improving task-related outcomes in human-
machine interaction settings has been overlooked. In an 
experimental study, Breazeal and colleagues [8], for 
example, show that nonverbal social behaviors such as gaze, 
shifts in posture or orientation serve not only a cosmetic but 
also a pragmatic role in improving team functioning. 
Parasuraman and Miller [40] also demonstrate that adhering 
to social etiquette rules such as when and how to interrupt in 
an automated system can drastically improve overall human-
machine system reliability.  

The possibility that subtle, and seemingly task-unrelated, 
social signaling can have important implications for the 
performance of human robot teamwork is intriguing, and 
past research leaves two important questions unanswered. 
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First, it is not clear how these social signaling behaviors 
affect task outcomes that go beyond the interaction itself. 
For example do these behaviors have direct task-related 
benefits rather than only benefits in improving perceptions 
such as liking or naturalness? Second, it is not clear from 
past research whether the effects of social signaling 
behaviors extend beyond the simple dyadic human-robot 
scenarios to more complex human-robot team 
configurations. 

A specific social signaling behavior that has been examined 
in the context of dyadic human robot interactions but not in 
complex human-robot teamwork settings is backchanneling 
[34, 46, 56]. Even though backchanneling is reported to 
have powerful effects in human-robot interaction, it is 
unclear whether those effects exist in complex scenarios in 
which the task, rather than the robot is the focus of attention. 
In the study presented here, we show that backchanneling is 
a subtle nonverbal social behavior that can have substantial 
effects on team functioning and perceptions of engagement 
in a complex teamwork scenario.  

Backchanneling in Interactions 
Backchanneling refers to a set of mostly nonverbal 
behaviors by a listener in a conversation, which signals to 
the speaker that the listener is actively engaged in the 
interaction. It includes behaviors such as “mm-hmm” 
vocalizations, slight nodding, eye contact, and orientation 
towards the speaker.  

Within the CSCW community, backchanneling has largely 
been treated as form of concurrent feedback. Dennis and 
Kinney [19], for example, describe that backchanneling 
serves four cognitive functions including indicating 
understanding, indicating lack of understanding, repair or 
clarification of the message, and sentence completion. From 
this perspective backchanneling’s main function is in 
establishing common ground by signaling that the receiver 
has understood the message [17]. Backchanneling, however, 
not only has a coordination function but also has a positive 
“gestalt emotional tone” [41]. It signals emotional 
attunement towards the speaker as an indication of 
emotionally positive validation, interest, and care about the 
partner’s opinions [18]. 

Backchanneling In Human-Robot Teamwork 
Given these broad cognitive and affective functions, 
backchanneling is a particularly promising behavior in the 
context of human robot interaction. First, it can be enacted 
nonverbally, which is important, as it can be manipulated 
without affecting the robot’s verbal content. Second, it can 
be implemented mechanically and computationally less 
expensive by using simple head movements and reactive 
timings based on speaker cues. Third, its effectiveness in 
conveying responsiveness and smoothing coordination has 
been demonstrated in the context of human-robot 
interactions. Yamasaki et. al. [56], for example, showed that 
robot backchanneling in the form of simple turns towards 
the speaker was consistently  reciprocated by human 

participants when being guided by a robot in a  museum. 
Backchanneling, even when it is only embodied through 
head movement indicates engagement [45] and when 
expressed by an artificial agent over longer periods of time 
has been shown to communicate caring [7]. Despite 
previous research, however, the role of backchanneling in 
complex human-robot teamwork is, as of yet, 
underexplored. 

Study Overview 
To explore the implications of backchanneling for the 
functioning of teams, we designed a 2 (backchanneling 
present: yes vs. no) by 2 (complexity: low vs. high) 
experiment.  

HYPOTHESES 
Theories about human-human interaction have been shown 
to be transferrable not only to human-computer interactions 
[39] but also to human-robot interactions [49] and human-
robot teams [48]. We therefore expect that the cognitive and 
emotional effects associated with backchanneling such as 
establishing common ground and signaling engagement can 
be leveraged to understand how people will behave in 
human-robot teams. 

Backchanneling improves team functioning 
We specifically anticipate that the benefits of 
backchanneling will aid team functioning in human-robot 
teams. Although subtle, the presence or absence of 
backchanneling indicated through nods, gaze, and “mhm” 
vocalizations has been shown to be a key factor in 
distinguishing high performance from low performance 
work teams [28]. Backchanneling has also shown to matter 
when people are interacting with robots. Bickmore and 
Picard [7], for example, showed that nonverbal behaviors 
such as head nodding when expressed by a computer agent 
strongly affected participants’ willingness to work with the 
computer agent in a future task. Further, Wang and 
colleagues [52] found that a robot tracking and following a 
person’s face increased enjoyment over a condition in which 
the robot remained still.  In human-robot teams, we 
therefore predict that when robots use backchanneling, it 
will enhance team functioning.  We further argue that this 
effect will be strongest when the task is complex. Complex 
tasks create more demand on team members, require more 
coordination as a result of greater uncertainty, and can 
generate more tension among team members than simple 
tasks [13]. We expect backchanneling through its cognitive 
role in establishing common ground and through its 
affective role in signaling positive attunement to alleviate 
the negative impact of increased complexity on a team. 

H1:  The presence of backchanneling by robots will improve 
team functioning (by decreasing stress and cognitive load 
and by increasing team coordination and performance) in 
human-robot teams, especially when the task is complex. 

Backchanneling increases perceived engagement 
Backchanneling can convey engagement in a task, 
suggesting that a team member is emotionally engaged and 
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fully present [29]. This is true for robots as well. Sidner et 
al. [45], for example, showed that a robot capable of 
backchanneling behavior was perceived as more engaging to 
participants who were asked to jointly give a demo with a 
robot. We anticipate that this effect in human-robot 
interaction will transfer to human-robot team interaction. 
That is, we expect that when robots use backchanneling in a 
collaborative task, they will be seen as more engaged in the 
task. 

We also argue that this effect will increase when the task is 
complex. A relationship between complexity and 
engagement was suggested by Carl Weick in his study of an 
airplane crew failure that led to a deadly collision [55]. He 
proposed that task complexity decreases as group 
engagement improves. That is, when people are fully 
engaged in a team task, they are better able to manage the 
complexity. We therefore anticipate that backchanneling 
will particularly help in complex tasks in which participants 
are trying to manage multiple activities and may need more 
overt signals from team members to help them cope with the 
complexity. In less complex tasks, however, backchanneling 
may be seen as less useful and therefore not an indicator of 
engagement.   

H2: Backchanneling by robots will be seen as positively 
related to robots’ engagement in the task when the task is 
complex, but less so when the task is not complex.  

Backchanneling decreases perceived competence 
Simple backchanneling used by robots might also have 
negative consequences. Human-like backchanneling 
behaviors can increase expectations team members have 
about the capabilities of a robot. Hinds, Roberts, and Jones 
[32], for example, showed that the more human-like a robot 
the more task responsibility people defer to it. If then 
expectations of the robot are not met, it might lead to 
disappointment and lowered perceptions of a robot’s 
competence. Backchanneling can also directly indicate a 
lack of competence. Johnson [26], for example, conducted 
an experimental study and found that in a dyadic work 
interaction low authority employees, responsible only for 
mundane tasks, exhibited more backchanneling such as 
“mmm-hmm” vocalizations than their high authority 
counterparts who were responsible for complex decision 
making . That is, backchanneling was associated with lower 
status. This is in line with findings that associate 
backchanneling with decreased perceptions of reliability in 
robots [45]. Taken together, this research suggests that 
backchanneling can signal that the actor is lower status and 
less competent. We therefore anticipate that while a 
backchanneling robot may ease team functioning and be 
perceived as more engaged, it may also be seen as less 
competent and intelligent than a robot that does not exhibit 
any backchanneling behavior.  

H3: Backchanneling by robots will decrease perceived 
competence and intelligence of the robot in human-robot 
teams, especially when the task is complex. 

TASK DESIGN 
To investigate our research questions, we required a task 
that utilized a human-robot team in which the people and 
robots were interdependent, required a high level of 
coordination and clear performance criteria, enabled us to 
vary task complexity, and created a sense of urgency for 
participants, thus fully engaging them in the task. Consistent 
with these requirements, we designed an urban search and 
retrieval (USAR) game in which human-robot teams worked 
together collaboratively to retrieve as many items as 
possible following a building collapse. 

Urban Search and Retrieval Scenario 
Based on available Urban Search and Rescue (USAR) 
scenario descriptions [36], we abstracted a USAR game 
described to participants as taking place in a large building 
that has recently collapsed, and in which the human-robot 
team needs to search and retrieve as many items as possible 
in 10 minutes. The USAR team consisted of the participant, 
two ground robots, and an aerial robot.  The ground robots 
were mobile, upper-torso humanoid robots named Nexi and 
Maddox, and the aerial robot (UAV) was remotely 
controlled by a human operator (confederate) who was also 
described as a member of the team.  

 
Figure 1.  USAR Sencario with two humanoid robots (Nexi in 

front and Maddox in back) 

Items (e.g. a briefcase, necklace, flashlight) were drawn onto 
small cards that were then covered by a post-it.  Items could 
be found everywhere in the arena (see Figure 1) on the floor 
and also in baskets.  Players needed to flip open the post-it 
to see what item was hidden underneath (see Figure 2). The 
goal of the game was to collect as many items as possible in 
10 minutes.  The team needed to coordinate together as each 
member has his/her own unique capabilities and skills in 
searching and retrieving the items that if utilized 
strategically could lead to better success.   

The arena was split into three danger zones (low, medium, 
and high), mimicking the varying levels of safety and 
searchable access in USAR situations. A player could safely 
search in the low danger zone, but was not allowed in the 
high danger zone.  To enter the medium danger zone, the 
player needed to check with the ground robots to see if 
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access was safe. The ground robots were capable of 
searching in all danger zones, and if an item was in an area 
too dangerous for humans, the robot could retrieve that item 
for the player, when instructed to do so.  The ground robots 
were also described as having a “special scanner” that 
allowed them to quick-scan a square (that it was currently 
in) to reveal all the items in that square.  Acting as the “eyes 
in the sky” and flying in the high danger zone, the UAV+O 
(unmanned aerial vehicle and the operator) had better global 
situational awareness of where items were hidden and could 
give information about the specific location of an item to the 
participant. The confederate, acting as the UAV operator, 
responded with information from a script and had 
preplanned actions in controlling the flying robot. 

A projector at the back of the arena displayed a set of three 
items to find for the current round and also a countdown 
clock indicating how much time remained.  For example, 
Figure 2 displays a time of 3 minutes 18 seconds remaining 
and for the current round the player needs to find the items: 
footprint, vest, and map. 

 
Figure 2.  Photos of elements of the USAR game. 

Game Play 
The following narrative illustrates a typical game play from 
a player’s point of view:  

The game starts with a loud buzzer ringing in the arena, and 
I look up at the projector and see that time is counting 
down!  Okay! We need to find the footprint, vest, and map 
for the first round.  I get down on the floor and start looking 
in square 27 in the low danger zone.  I frantically flip the 
post-its one by one to see what item is hidden underneath.  I 
then remember that the ground robots have a special 
scanner and ask Nexi, “Can you scan square 25?”  Nexi 
replies, “Okay I will go to square 25.”  Nexi and I both 
search in the low danger zone as Maddox goes off and 
searches around in the medium danger zone.  I flip open a 
post-it and found the vest inside!  I exclaim, “I have found 

the vest” into the mic so the robots can stop looking for that 
particular item.  Nexi finally arrives in square 25 and after 
scanning the square says “I’ve found the footprint in square 
25.”  I scramble over and start flipping and indeed found 
the footprint!  Great, okay, just need to find the map to 
finish this round.  I ask Maddox, “Have you found 
anything?” And he replies, “No, I have not found anything 
in particular yet.”  I grab my walkie-talkie and say, “Aerial 
operator, can you tell me where the map is?”  He replies, 
“Okay, I’m on it!” I then see the UAV fly up into the air in 
the high danger zone as it surveys the entire scene.  I 
continue looking around in the low danger zone, and I look 
over to see that both Nexi and Maddox are searching in the 
medium danger zone. The aerial operator finally reports 
back through the walkie-talkie, “The map is in the medium 
danger zone in square 8.”  I ask Maddox, “Is square 8 
safe?” and he replies “No, it is not safe.”  I then ask 
Maddox to go into square 8 and once he arrives he says, “I 
have found the map in square 8, would you like for me to 
bring it to you?”  I reply “Yes!” and moments later Maddox 
brings me a basket with the map inside of it and now its time 
for round 2!   
TECHNOLOGY IMPLEMENTATION 

Robot Platforms 
The ground robots (Maddox and Nexi) are mobile, upper 
torso humanoid robots that are a part of the MDS (Mobile-
Dexterous-Social) robot line as seen in Figure 1.  The MDS 
robots are 4 to 5-feet tall with a hokuyo sensor mounted near 
the base of the robot and a kinect sensor mounted near the 
torso.  They have 15 facial degrees of freedom (DoFs), 4 
neck DoFs, a pair of 3 DoF shoulders, a pair of 5 DoF lower 
arms and hands, DoFs, a mobile wheel base with 2 DoFs, 
and a torso DoF.  The neck and head mechanisms have 4 
DoFs to support a lower bending at the base of the neck as 
well as pan-tilt-yaw of the head. The head can move at 
human-like speeds to support human head gestures such as 
nodding, shaking, and orienting.  

The ground robots are fully autonomous agents (see below 
for system details), and the AR.Drone, a commercially 
available aerial robot, was teleoperated by a remote operator 
using its tablet interface. 

System Overview 

Autonomous Humanoid Robots 
The role of the ground robots is to collaborate with the co-
located human participant to successfully complete the 
USAR task.  As such, these robots were capable of listening 
and recognizing human requests, verbally and nonverbally 
responding to humans, searching and navigating the arena, 
being aware of the task and environment states, and picking 
up baskets with items. To ensure consistent behavior of the 
robots, we developed fully autonomous robotic agents rather 
than utilizing a Wizard of Oz approach.  
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System Modules 
By combining commercially available software solutions, 
open-source software packages, and custom in-house code, 
we created the following necessary technical modules 
relevant to the experiment: 

Navigation: Laser range values from the hokuyo are used to 
estimate the robot’s current position and orientation in a pre-
made map of the arena through the Carnegie Mellon Robot 
Navigation Toolkit (CARMEN)[14]. We then used A* to 
path-plan to target destinations while avoiding static and 
moving obstacles. We included dynamic re-planning A* 
when an obstacle is hit. 
Manipulation: The RGB image from the kinect was sent to 
ARToolKit [1], a software library that tracks special 
markers in physical space, to locate baskets in the 2D image.  
Unfortunately, since the robot’s grasping range is outside 
the min range of the kinect’s depth sensor, we estimated the 
3D location of the basket in real coordinates using the z-
depth value provided by the hokuyo, which can sense at a 
shorter minimum distance.  We then used CCD (Cyclic 
Coordinate Descent [53]), an inverse kinematics method, to 
hook onto the basket’s handle. 
Speech: To understand the human utterances, we used the 
CMU Sphinx [47], an open source toolkit for speech 
recognition along with a human monitoring the speech input 
and either filtering or correcting misinterpreted speech.  The 
robots spoke using synthesized voice through Cereproc [16], 
a real-time text-to-speech commercial technology, while 
also generating corresponding readable mouth positions 
with its articulated jaw. Nexi, the smaller robot, was given a 
female voice, and Maddox a male voice to make them easily 
distinguishable. 
Human Localization: We used the Vicon [51] motion 
capture system to track a specially marked hat worn by the 
participant (see figure 2) and localize the human’s position 
in the low danger zone.  And by fusing the Vicon and 
CARMEN virtual spaces, the robots could also localize the 
human’s relative position in the entire arena even when they 
were outside the vicon space. 
Backchanneling: Backchanneling was provided through 
articulation of the head, eyes and upper torso. The feedback 
module was implemented by processing speech volume of 
the participant and then triggering the backchanneling 
response whenever the speech volume increased beyond a 
certain threshold. (For more detail, please consult the 
Experimental Manipulations section.) 

System Behavior  
The robot's primary behavior system was structured within a 
finite state machine that drove the main interaction, 
dialogue, and the random coverage search of the arena.  A 
pilot study was performed early in the study design stage to 
determine the phrases most likely uttered in the task 
scenario, which served as event triggers for many states. The 
behavior system was a mixed initiative design in which an 
action queue could be self-populated and also managed by 

the interaction state machine. When a question or request 
was made to the robot, the robot responded by looking into 
its own memory or by addressing the command by 
prioritizing it in the action queue. In general, a separate 
action queue was maintained for managing the dialogue. 

Task Management 
The robot's task system was based on a common interaction 
policy between groups that was determined during the pilot 
study. A number of subsystems interacted by queuing and 
prioritizing social actions such as speech and gesture. The 
task model works closely with the dialogue in that the 
human can explicitly queue certain action policies such as 
searching for specific objects or visiting certain regions for 
exploration. Constraints were hard coded into the system to 
limit the potential actions. For instance, the robot could not 
go searching for an item once it had been asked to retrieve 
an object and the object was in its hand.  

METHOD 
To test our hypotheses, we conducted a 2 (presence of 
backchanneling:  no vs. yes) x 2 (task complexity: low vs. 
high) between-subject experiment (N = 73).  

Participants 
We recruited ninety-six participants from a university 
community who were randomly assigned to one of the four 
conditions. Of the ninety-six participants seventy-three 
completed the study successfully and were included in the 
analysis – the others were dropped due to various 
malfunctions of the robots. Participants ranged in age from 
18 to 40 (M = 25.0, SD = 6.1).  

Experimental Manipulations 
We manipulated backchanneling by adding or omitting 
nonverbal look-at and nodding behavior. In the 
backchanneling condition the robots oriented their body and 
turned their heads and eyes towards the participant, which 
composed of the “look-at” behavior, and nodded slightly 
whenever the participant made an utterance. We involved 
the entire “body” of the robots in the enactment of this 
behavior as the social perception of physical behavior is 
dependent on the entire body, rather than just the face [2]. 
We carefully timed the behavior so that it occurred in 
parallel with the utterances of a speaker and we chose a 
subtle, quick nod that was designed by a professional 
animator. The timing was to ensure that the looking-at and 
nodding would indicate concurrent backchanneling and 
listening feedback rather than an explicit “yes” response by 
the robot to something said by the participant. In the no 
backchanneling conditions, the robots did not exhibit any 
look-at or nodding behavior. As shown in Figure 3 below, 
requests by the human were always acknowledged verbally 
across conditions. Backchanneling was only manipulated 
through the presence and absence of nonverbal behavior. 
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We manipulated task complexity by altering two 
characteristics previously identified as fundamental task 
complexity characteristics [13], including multiple paths to a 
desired end state and conflicting interdependence. The 
presence of these characteristics alone or in combination 
distinguishes non-complex from complex tasks [13]. In the 
low complexity condition, we told participants that they 
would get one point for each item found. In the high-
complexity condition we told participants that they would 
get one point for each item found, however, if they found all 
three items of one set in the color blue their points would 
double, if they found all in green their points would triple, 
and if they found all in red their points would quadruple. 
Each item was available in all three colors across conditions. 
Operationally the only change between low and high 
complexity was whether the task description gave the color 
added significance. This change in the task description 
opened up “multiple pathways to the desired end-state.” 
Participants could vary their strategy to balance speed and 
the value of the combination of items. Participants also had 
to make tradeoffs as to whether they wanted to find more 
items within the time available or find the matching colors, 
which satisfied the “presence of conflicting inter-
dependence” condition for task complexity. The order and 
composition of item sets were identical across conditions. 

Materials and Measures 
We used a range of subjective and objective measures that 
were administered during and after the task to test our 
hypotheses. Our dependent measures include four items for 
team functioning, two for robot engagement, and two for 
perceptions of the robots’ competence. 

Manipulation Checks 
As a manipulation check of the robots’ backchanneling, we 
asked participants to rate the extent to which they thought 
the ground robots were looking at them on a seven-point 
Likert type scale between “strongly disagree” and “strongly 
agree.”  
Our second manipulation, task complexity, was measured 
using a two-item scale (α = .70) comprised of items taken 
from [20] “I found this to be a complex task” and [35] “The 
task required me to coordinate many different things at the 
same time”. Participants rated the items on a seven point 
scale from “totally disagree” to “totally agree.”  

Team Functioning 
To address the first hypothesis, we measured stress, 
cognitive load, team coordination, and team performance. 
We measured participants’ level of stress with a three-item 
sub-scale (α = .72) of the Positive and Negative Affect 
Schedule (PANAS) [54] administered as part of the post-
task survey. Participants were asked to report on a five-point 
scale ranging from “very slightly or not at all” to 
“extremely” with regard to how much they were distressed, 
upset, and irritable during the task.  
To measure cognitive load, we took a direct, objective 
measure using a dual task paradigm [12, 50]. Participants 
were instructed to monitor and press a big red 
“communication button” as soon as possible when it started 
to blink (see figure 2). The blinking button, they were told, 
meant that other responders were trying to verify that they 
were okay and pushing the button would signal that the team 
was safe. The button blinked three times at 3, 5, and 9 
minutes into the task, and we measured the reaction times 

 
Figure 3.  Temporal visualization of backchanneling manipulation. The robots respond verbally to requests across conditions, 

however the nonverbal backchanneling is only triggered in the backchanneling condition.  
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between the time the button started to blink and the moment 
the participant hit the button. We averaged across three 
measurements to account for the possibly varying travel 
distances by the participants. Our objective cognitive load 
measure was computed by taking the sum of all three 
reaction times and dividing the sum by the number of button 
presses that were made before the timeout. Several 
participants forgot about the button entirely and therefore 
reaction time was only used as a measure if the button was 
pressed at least once during the task (N = 55). We also used 
a self-report measure of cognitive load in which, as part of 
the post-task survey, we asked participants the extent to 
which “the task was mentally demanding” on a 7-point scale 
ranging from “totally disagree” to “totally agree.” 

We measured perceived team coordination with the five-
item coordination subscale (α = .83) from the Transactive 
Memory System (TMS) scale by Lewis and colleagues [33]. 
Participants rated items such as “Our team worked together 
in a well-coordinated fashion” on a 5-point Likert type scale 
ranging between “strongly disagree”, and “strongly agree.” 

Finally, we measured team performance by recording the 
number of items found by each team. We counted how 
many correct items participants placed in the container 
within the allotted ten minutes of the task.  

Perception of Robots’ Engagement 
To address our second hypothesis focusing on how 
backchanneling from the robots and task complexity would 
affect perceptions of the robots’ engagement, we measured 
perceived distraction and responsiveness by using 7-point 
scale items ranging from “totally disagree” to “totally 
agree”. Perceived distractedness used a 2-item measure 
including questions about the extent to which the ground 
robots seemed distracted and unfocused (α = .70). We 
measured responsiveness by asking respondents about the 
extent to which they “felt that the ground robots were 
responsive.” 

Perception of Robots’ Competence 
To address our third hypothesis focusing on how robot 
backchanneling and task complexity would affect 
perceptions of the robots’ competence, we employed two 
measures of robot perception in our post-task survey. First 
we measured perceived intelligence with a 5-point scale by 
asking “How much did you feel as if you were accompanied 
by intelligent beings?” borrowed from [32]. Second, we 
measured perceived competence by asking participants to 
rate the extent to which they “felt that the ground robots are 
very competent.” on a 7-point scale.  

Procedure 
Upon arrival in the lab participants were asked to sit at a 
table separated from the task arena by a curtain and were 
asked for their informed consent to participate in our study. 
First, each participant filled out the pre-task section of our 
online survey, which asked about their demographic 
background, knowledge and experience of robots, and prior 

knowledge of the MDS robot platform that we used in our 
study. 

Next, participants were introduced to the task through an 
instructional slide presentation – either the “low 
complexity” or “high complexity” version, depending on the 
condition to which they were assigned. Each participant was 
then asked to enter the task arena and was introduced to the 
physical setup of the space. An experimenter re-iterated the 
main points of the task and participants were given the 
opportunity to ask further clarification questions about the 
task.  Before starting the main task, participants performed a 
trial search and retrieval task by finding and retrieving a 
specific item without the help of the robot. Participants were 
informed that the best performing team would win an 
additional $200. This task introduction and training 
procedure took approximately 15 minutes. 

For the main task, participants conducted the ten-minute 
search and retrieval task as outlined in the previous section. 
Participants were asked to find and retrieve as many items 
as possible. After reaching the ten-minute time limit, we 
congratulated participants for their performance and asked 
them to return to the table behind the curtain to complete the 
post-task survey.  Participants were then thanked and paid.  

Data Analysis 
We used a two-way analysis of variance (ANOVA) to 
investigate whether robot backchanneling and task 
complexity influenced team functioning and participants’ 
perceptions of the robot. In each ANOVA we used robot 
backchanneling (no vs. yes) and task complexity (low vs. 
high) as independent variables. We also included participant 
gender, age, and prior knowledge about robots as covariates, 
but none of them had any significant influence on our 
dependent measures. We therefore omitted the covariates 
from further discussion. 

RESULTS 

Manipulation Checks 
Participants in the backchanneling condition felt more 
strongly that the ground robots were looking at them 
(M = 4.78, SE = 0.21) as compared with those in the no-
backchanneling condition (M = 4.03, SE = 0.23), F(1, 65) 
= 5.93, p < .05, providing evidence that our backchanneling 
manipulation was effective.  

Interestingly, the main effect for perceived task complexity 
was not significant because the backchanneling 
manipulation interacted with perceived task complexity. We 
found a main effect for robot backchanneling on task 
complexity (F(1, 69) = 4.78, p < .05), as participants 
perceived the task as significantly less complex in the 
backchanneling condition (M = 5.16, SD = 1.16) than in the 
no-backchanneling condition (M = 5.76, SD = 1.16).  
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Team Functioning 
In our first hypothesis, we argued that backchanneling by a 
robot would improve team functioning, especially when the 
task is complex.  To test this, we examined participants’ 
self-reported stress during the task, cognitive load as 
measured by reaction time, self-reported team coordination, 
and performance measured by number of items found in the 
task.  H1 was partially supported.  

Stress 
As expected, we found a significant interaction between 
backchanneling and complexity of the task when predicting 
the amount of stress perceived by the participant F(1,69) = 
7.63, p < .01. This indicates that when task complexity was 
low, the perceived stress of participants was similar in the 
no-backchanneling (M = 1.72, SD = 0.70) and 
backchanneling condition (M = 1.87, SD = 0.50).  However, 
when task complexity was high, the perceived stress of 
participants was significantly higher in the no-
backchanneling condition (M = 2.55, SD = 0.86) than in the 
backchanneling condition (M = 1.78, SD = 0.73). 
Additionally, there was a significant (positive) main effect 
of task complexity on perceived stress, F(1, 69) = 5.00, 
p < .05 (see left graph in Figure 4).  

Cognitive Load 
Consistent with hypothesis 1, we also found a significant 
main effect of robot backchanneling when predicting our 
behavioral measure of cognitive load F(1, 51) = 6.70, 
p < .05. The presence of backchanneling reduced the 
reaction time on the parallel task of pressing the button by 
an average 46% between the backchanneling condition 
(M = 101.28 sec, SD = 62.40) and the no-backchanneling 
condition (M = 184.87 sec, SD = 157.21), suggesting that 
people experienced significantly less cognitive load when 
the robot used backchanneling. Our self-report measure of 
cognitive load confirmed that the task was perceived as less 
mentally demanding when the robot used backchanneling, 
F(1,69) = 4.91, p < .05. There was, however, no interaction 
between backchanneling and task complexity, so hypothesis 
1 was only partially supported (see right graph in Figure 4).  
 

 
Figure 4. Left Graph: Effect of robots’ backchanneling and 

task complexity on stress. Right graph: Effect of robots’ 
backchanneling and task complexity on cognitive load 

(measured as response time in seconds). Error bars = ±1SE 

Team Coordination 
We found a significant main effect of task complexity on 
participants’ sense of overall team coordination F(1, 70) = 
5.45, p < .05. Participants found their teams to be more 
coordinated when task complexity was low (M = 3.44, 
SD = 0.75) in comparison to when task complexity was high 
(M = 3.03, SD = 0.80).  There was not, however, any main 
effect of robots’ backchanneling, nor an interaction effect 
between backchanneling and complexity, as predicted in 
hypothesis 1 (see left graph in Figure 5).  

Team Performance 
Our last indicator of team functioning was team 
performance measured by the number of items found during 
the task. Although the main effect of backchanneling on the 
number of items found was not significant, F(1, 69) = 2.31, 
p = .13, the direction was as predicted. That is, participants 
performed better, albeit not significantly, when the robot 
used backchanneling (see right graph in Figure 5).  
 

 
Figure 5. Left graph: Effect of robots’ backchanneling and task 

complexity on perceived team coordination. Right graph: 
Effect of robots’ backchanneling and task complexity on team 

performance (number of items found). Error bars = ±1S 

Perceptions of the Robots’ Engagement 
We argued in hypothesis 2 that participants would perceive 
robots that used backchanneling to be more engaged and 
that this would be strongest in the high task complexity 
conditions.  

Perceived responsiveness 
Our analysis predicting perceived responsiveness supports 
hypothesis 2.  The interaction between robots’ 
backchanneling and task complexity was significant, 
F(1,69) = 6.17, p < .05, indicating that when the task was 
complex, the robots that gave feedback were seen as more 
responsive whereas in the less complex task, the robots that 
gave no backchanneling were seen as more responsive.  
There were no main effects (see left graph in Figure 6). 

Perceived distractedness 
Our analysis predicting distraction yielded a similar result. 
That is, when the task was complex, robots that used 
backchanneling were seen as less distracted whereas, in the 
low task complexity conditions, the robots that provided 
feedback were seen as more distracted, F(1, 69) = 4.50, 
p < .05. Thus H2 was partially supported (see right graph in 
Figure 6).  
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Figure 6 Left graph: Effect of robots’ backchanneling and task 
complexity on perceived responsiveness of robots. Right graph: 

Effect of robots’ backchanneling and task complexity on 
perceived distraction of robots. Error bars = ±  1 SE 

Perceptions of the Robots’ Competence 
In hypothesis 3, we argued that participants, despite the 
positive effects of robots that use backchanneling, would 
perceive affective robots more negatively.  

Perceived Intelligence 
As expected, we found a significant main effect of robot 
backchanneling on perceived intelligence of the robots 
F(1, 69) = 4.53, p < .05. Participants found the robots that 
used backchanneling (M = 2.68, SD = 1.02) to be on average 
16% less intelligent than the robots that did not use 
backchanneling (M = 3.20, SD = 1.02).  We did not, 
however, find an interaction effect, as hypothesized (see left 
graph in Figure 7). 

Perceived Competence 
As with perceived intelligence, our analysis of perceived 
competence of the robot showed that robots that used 
backchanneling were perceived as less competent than 
robots that did not, F(1,69) = 4.65, p < .04. Again, there was 
no interaction effect, so hypothesis 3 was only partially 
supported (see right graph in Figure 7). 

 
Figure 7 Left graph: Effect of robots’ backchanneling and task 

complexity on perceived intelligence of robots. Right graph: 
Effect of robots’ backchanneling and task complexity on 

perceived competence of robots. 

DISCUSSION 
We argued and found that subtle backchanneling by robots 
in human-robot teams helped team functioning (lower stress, 
lower cognitive load) and perceived engagement of the 
robots, especially when the task was complex, but at the 
same time lead to robots being seen as less competent. We 
also found that task complexity had a significant effect on 

peoples’ responses to the robots’ backchanneling.  In 
general, we saw a pattern in which more benefits (less 
stress, less cognitive load, more perceived engagement) 
were found from backchanneling in high complexity 
conditions over low complexity conditions.  Complexity, 
however, did not interact significantly with perceptions of 
robots’ competence. These results suggest that the biggest 
benefits from backchanneling in human-robot teams may be 
seen when tasks are demanding and complex.  

Although the trend was in the right direction, we were not 
able to demonstrate a significant effect of backchanneling 
on the number of items found. We attribute this to a ceiling 
effect. One of the items in the fourth round of the USAR 
game could only be picked up by a robot as the item was in 
the high danger zone at the far end of the arena. Retrieving 
this item took the robots an especially long time due to 
travel time. Even if all other items in that set had already 
been found, the participants waited for the robot to retrieve 
the item in the danger zone.  All participants ran out of time 
before the robot retrieved that item and therefore no 
participant advanced from round 4.  It would be useful if 
future research included more sensitive measures of 
performance to better detect the effects of backchanneling 
on performance. 

Previous research has highlighted both a cognitive and an 
affective role of backchanneling in interactions. Cognitively, 
backchanneling is a key factor in establishing common 
ground [17] and affectively backchanneling indicates 
emotionally positive engagement and listening [18]. 
Contrary to our expectations, backchanneling did not have 
any effects on participants’ perceptions of team 
coordination. This suggests that our particular way of 
embodying backchanneling was not successful in tapping 
into the cognitive benefits of backchanneling to build 
common ground. If our manipulation had worked primarily 
at a cognitive level, we would have expected the robots to 
be seen as more competent and intelligence, especially in 
high complexity conditions, because they would have been 
seen as instrumental in establishing common ground. We 
found, however, that backchanneling reduced perceptions of 
competence and intelligence independent of task 
complexity. Backchanneling might also have raised 
participants’ expectations about the robots’ cognitive 
capabilities. When these cognitive expectations were not 
met, people thought of the robots as less competent 
collaborators.  

The results we obtained are more consistent with theories of 
backchanneling as an affective phenomenon. To understand 
backchanneling as affective, we take what Keltner and Haidt 
[30] called a social-functional perspective on affect. This 
perspective emphasizes the interpersonal functions of 
emotion and the notion that the emotional meaning of 
behavior is not inherent in behavior itself. Rather than 
assuming a one-to-one coherence between a specific 
behavior and its emotional meaning (such as a smile for 
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happiness, or an eye-roll for contempt) it is assumed first, 
that the affective meaning of behavior is constructed in the 
context of the interaction itself, and second, that there are an 
infinite number of ways to express a certain affective quality 
in an interaction. A smile, for example, can be 
condescending, and an eye-roll can be seen as empathetic if 
a team member complains about a vendor and his colleague 
rolls his eyes in agreement. The condescending comment 
and the eye-roll form what Schegloff [43] called an 
adjacency pair as the interpretation of the colleague’s eye-
roll is directly contingent upon the teammate’s complaint. In 
the same way, the emotional interpretation of 
backchanneling behavior is contingent upon its placement 
within the interaction. The slight nodding and looking by the 
listener when placed concurrently with the speaker as 
implemented in our study can transform backchanneling to 
convey positive listening and engagement.  

Backchanneling from a social-functional perspective can be 
seen as an interactive device for regulating emotions in 
teams. Emotions are contagious. They easily spread within a 
team and it only takes one person’s negative emotions to 
spoil an entire team [3, 21]. Since emotions are crucial 
determinants of team performance [4], this opens up the 
possibility that robots, through their backchanneling 
behavior, can help to regulate the emotions of a team and 
through that ultimately affect the team’s performance. 
Understanding when and what robot affective displays are 
contagious will be important in designing more effective 
robot team members. At the extreme, robots’ 
backchanneling and displays could be used to intentionally 
regulate the emotions of work teams, for example, diffusing 
stressful situations when the work is demanding and 
dangerous.  

More broadly, it becomes important to consider the affective 
meanings and effects of the interactive capabilities currently 
being developed in the field of robotics (nodding, speech 
modulation, gaze, body orientation, etc). A social-functional 
perspective applied to these behaviors might reveal affective 
implications for behaviors that have been thought of as 
purely cognitive. For example, simple pointing gestures can 
have important positive functions in directing attention but 
they can also be interpreted as a domineering or even 
condescending gesture. Focusing on these social 
interpretations of behavior is particularly important since 
brief exposure to a nonverbal expression is enough for 
people to infer a complex image of a person’s (and perhaps 
a robot’s) personality [31] and capabilities. 

In sum, our results confirm that subtle forms of 
backchanneling by robots may ease team functioning and 
improve perceptions of robots’ engagement in complex 
tasks, but at the same time create more negative impressions 
of the robots’ competence. These results suggest that more 
attention is needed to subtle affective cues and their role in 
human-robot teams. 
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APPENDIX: SURVEY ITEMS 

Manipulation Checks 

Back-channeling: 
 “I felt that the ground robots were looking at me” (7pt, “strongly 
disagree” – “strongly agree”)  

Task Complexity: 
“I found this to be a complex task” 
“The task required me to coordinate many different things at the 
same time”. (7pt, “totally disagree” – “totally agree”) 

Team Functioning 

Stress:  
“Indicate to what extent you have felt distressed during the 
interaction task” 
“Indicate to what extent you have felt upset during the interaction 
task” 
“Indicate to what extent you have felt irritable during the 
interaction task” (5pt, “very slightly or not at all” – “extremely”) 

Cognitive Load: 
“The task was mentally demanding” (7pt, “totally disagree” – 
“totally agree”) 

Perceived Team Coordination: 
“Our team worked together in a well-coordinated fashion.” 
“Our team had very few misunderstandings about what to do.” 
“Our team needed to backtrack and start over a lot.” (reverse 
scored) 
“We accomplished the task smoothly and efficiently.” 
“There was much confusion about how we would accomplish the 
task.” (reverse scored) (5pt, “strongly disagree” – “strongly agree”) 

Perceptions of robots’ engagement 

Perceived Distractedness 
“I felt that the ground robots were distracted” 
“I felt that the ground robots were unfocused” (7pt, “strongly 
disagree” – “strongly agree”) 

Perceived Responsiveness 
“I felt that the ground robots were responsive” (7pt, “strongly 
disagree” – “strongly agree”) 

Perceptions of robots’ competence 

Perceived Intelligence 
“How much did you feel as if you were accompanied by intelligent 
beings?” (5pt, “not at all” – “absolutely”) 

Perceived Competence 
“The ground robots are very competent” (7pt, “strongly disagree” – 
“strongly agree”) 
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