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Abstract

A mounting body of evidence in psychology and neuro-
science points towards an embodied model of cognition,
in which the mechanisms governing perception and ac-
tion are strongly interconnected, and also play a central
role in higher cognitive functions, traditionally modeled
as amodal symbol systems.

We argue that robots designed to interact fluidly with
humans must adopt a similar approach, and shed tra-
ditional distinctions between cognition, perception, and
action. In particular, embodiment is crucial to fluid joint
action, in which the robot’s performance must tightly
integrate with that of a human counterpart, taking ad-
vantage of rapid sub-cognitive processes.

We thus propose a model for embodied robotic cogni-
tion that is built upon three propositions: (a) modal, per-
ceptual models of knowledge; (b) integration of percep-
tion and action; (c) top-down bias in perceptual process-
ing. We then discuss implications and derivatives of our
approach.

“[T]he human being is a unity, an indivisible whole. [...] ideas,
emotions and sensations are all indissolubly interwoven. A bodily
movement ‘is’ a thought and a thought expresses itself in corporeal
form.”

— Augusto Boal (2002)

Introduction

We aim to build robots that work fluidly with humans in a
shared location. These robots can be teammates in a joint
human-robot team; household, office, or nursing robots as-
sisting everyday people in their tasks; or robotic entertainers
performing in conjunction with a human actor. In each of
these cases, the robot is expected to maintain continuous in-
teraction with a person, tightly meshing its actions with that
of the human.

Drawing from a growing body of knowledge in psychol-
ogy and neuroscience, we propose an architecture that di-
verges from much of the traditional work in artificial intel-
ligence in that it emphasizes the embodied aspects of cog-
nition (Wilson 2002). It is becoming increasingly clear
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that human (as well as animal) perception and action are
not mere input and output channels to an abstract sym-
bol processor or rule-generating engine, but that instead
thought, memory, concepts, and language are inherently
grounded in our physical presence (Pecher & Zwaan 2005;
Barsalou 1999; Wilson 2001). The same principles also
play a substantial role in social cognition and joint action,
when it becomes crucial to coordinate one agent’s activ-
ity with another’s (Sebanz, Bekkering, & Knoblich 2006;
Barsalou er al. 2003). It is our belief that these lessons can
and should be transferred to robotic cognition as well, and
in particular if we are to design robots that act in natural and
fluid dialog with a human partner.

A central goal of this work is to steer away from the stop-
and-go turntaking rigidity present in virtually all human-
robot interaction to date. Based on many of the same under-
lying assumptions of symbolic Al, robotic dialog systems,
robotic teammates, and robotic stage actors take little or no
advantage of the social and non-verbal behaviors that enable
humans to easily display an impressive level of coordination
and flexibility. The premise of this work is that a physically
grounded cognitive architecture can give rise to appropriate
behavior enabling a much more fluid meshing of a robot’s
actions with those of its human counterpart.

In this paper we propose an architecture built on three in-
terrelated principles backed by psychological and neurolog-
ical data:

Modal, perceptual models of knowledge Much of Al is
focused on amodal theories of knowledge, which as-
sert that information is translated from perceptual stim-
uli into nonperceptual symbols, later used for information
retrieval, decision making, and action production. This
view also corresponds to much of the work currently done
in robotics, where sensory input is translated into seman-
tic symbols, which are then operated upon for the pro-
duction of motor control. In contrast, a growing num-
ber of psychologists and neuroscientists support a percep-
tual model of cognition, in which perceptual symbols are
stored through modus-specific mechanisms, subsequently
used by ways of “simulation” or “imagery” (Barsalou
1999; Kosslyn 1995). Perceptual symbols are organized
in cross-modal networks of activation which are used to
reconstruct and produce knowledge.



Integration of perception and action Evidence also
points to a close integration between perceptual mecha-
nisms and action production. A large body of work points
to an isomorphic representation between perception and
action, leading to mutual and often involuntary influence
between the two (Wilson 2001). These mechanisms
could also underlie the rapid and effortless adaptation to
a partner that is needed to perform a joint task (Sebanz,
Bekkering, & Knoblich 2006). For robots that are to
work in a similarly fluid manner, it makes sense to
break from the traditional modular approach separating
perception, action, and higher-level cognition. Instead,
intentions, goals, actions, perceptions, concepts, and
object representations should interact in a complex
network of activation, giving rise to behaviors that are
appropriate in timing and context.

Top-down bias in perceptual processing Finally, the two
principles outlined above, as well as a large body of re-
lated experimental data, give rise to the following insight:
perceptual processing is not a strictly bottom-up analysis
of raw available data, as it is often modeled in robotic sys-
tems. Instead, simulations of perceptual processes prime
the acquisition of new perceptual data, motor knowledge
is used in sensory parsing, and intentions, goals, and ex-
pectations all play a role in the ability to parse the world
into meaningful objects. This seems to be particularly true
for the parsing of human behavior in a goal-oriented man-
ner, a vital component of joint action.

In this paper, we will briefly present evidence for the prin-
ciples outlined above and discuss their pertinence to fluid
joint action. We will describe how we use these principles
in a cognitive framework for a robot designed to act jointly
with a human counterpart. We then discuss a number of in-
terrelated concepts as they stem from this approach, notably:
(a) attention, (b) routine action, (c) practice, (d) flexible res-
olution, (e) anticipatory action, and (f) mutual responsive-
ness.

Embodied Cognition: Evidence from
Neuropsychology

During the second half of the twentieth century artificial
intelligence has not only drawn from theories of cognitive
psychology, but also shaped notions of amodal, symbolic
information processing. According to this view, perceptual
input is hierarchically processed in isolated modules, and
eventually gives rise to a non-perceptual representation of
concepts, which are processed symbolically and may subse-
quently give rise to physical behaviors.

An increasing body of recent findings challenges this view
and suggests instead that concepts and memory are phenom-
ena which are grounded in modal representations utilizing
many of the same mechanisms used during the perceptual
process. Moreover, action production and perception are not
separated by supervisory, symbolic rule operators, but in-
stead intimately linked. Models of action production affect
perceptual acquisition and retention, and give rise to a num-
ber of intermodal effects.

Perceptual Models of Knowledge

In recent years, many authors in language, psychology, and
neuroscience have supported perceptual theories of cog-
nition (Spivey, Richardson, & Gonzalez-Marquez 2005;
Lakoff & Johnson 1999; Stanfield & Zwaan 2001). A promi-
nent theory explaining these findings is one of “simulators”,
siting long-term memory and recall in the very neural mod-
ules that govern perception itself (Barsalou 1999). By this
theory, concepts are formed as activation patterns of expe-
riences related to the pattern, stored in associative networks
relating them to other modalities, and re-invoked using per-
ceptual simulators of such experiences. This view is sup-
ported by a large number inter-modal behavioral influences,
as well as by the detection of perceptual neural activation
when a subject is engaging in cognitive tasks. Thus, when
memory—and even language—is invoked to produce behav-
ior, the underlying perceptual processes elicit many of the
same behaviors normally used to regulate perception.

A similar case has been made with regard to hand signals,
which are viewed as instrumental to lexical lookup during
language generation (Krauss, Chen, & Chawla 1996), and
is supported by findings of redundancy in head-movements
(McClave 2000) and facial expression (Chovil 1992) during
speech generation.

A number of experiments evaluating perceptual tasks
have shown that task time is related to the mental simula-
tion of kinematic configuration (Parsons 1994). Similarly, a
study shows that children who mispronounce certain letters
confuse the same letters in word recall, even when the mem-
ory cue is purely visual (Locke & Kutz 1975). In visual
processing, imagery is a conscious simulation mechanism
(Kosslyn 1995), and is believed by some to use the same
neural mechanisms as perception (Kreiman, Koch, & Fried
2000; Kosslyn 1995).

Perception-Action Integration

In parallel to a perception-based theory of cognition lies
an understanding that cognitive processes are equally inter-
woven with motor activity. Evidence in human develop-
mental psychology shows that motor and cognitive devel-
opment are not parallel but highly interdependent. For ex-
ample, artificially enhancing 3-month old infant’s grasping
abilities (through the wearing of a ‘sticky’ mitten), equated
some of their cognitive capabilities to the level of older, al-
ready grasping!, infants (Somerville, Woodward, & Need-
ham 2004).

Additionally, neurological findings indicate that—in
some primates—observing an action and performing it
causes activation in the same cerebral areas (Gallese et al.
1996; Gallese & Goldman 1996). This common coding is
thought to play a role in imitation, and the relation of the
behavior of others to our own, which is considered a central
process in the development of a Theory of Mind (Meltzoff
& Moore 1997). For a review of these so-called mirror neu-
rons and the connection between perception and action, as it
relates to imitation in robots, see (Matari¢ 2002).

'In the physical sense.



The capability to parse the actions and intentions of oth-
ers is a cornerstone of joint action. Mirror mechanisms have
been found to play a role in experiments of joint activity,
where it has been suggested that the goals and tasks of a
team member are not only represented, but coded in func-
tionally similar ways to one’s own (Sebanz, Bekkering, &
Knoblich 2006).

Another important outcome of the common mechanism
of motor simulators and perception is that there seem to be
“priviledged loops” between perception and action, which
are faster and more robust than supervised activity. Humans
can “shadow” speech with little effort or interference from
other modalities, and this effect is dampened when even the
simplest translation is required (McLeod & Posner 1984).

Much of our critical cognitive capabilities occur in what
is sometimes called a “cognitive unconscious” (Lakoff &
Johnson 1999), and it seems that these are more prominent
in routine activity than those governed by executive control.
Routine actions are faster and seem to operate in an unsuper-
vised fashion, leading to a number of action lapses (Cooper
& Shallice 2000). From introspection we know that super-
visory control is often utilized when the direct pathways fail
to achieve the expected results. These unsupervised capa-
bilities seem to be highly subject to practice by repetition,
and are central to the coordination of actions when working
on a joint task, a fact that can be witnessed whenever we
enjoy the performance of a highly trained sports team or a
well-rehearsed performance ensemble.

Top-down Perceptual Processing

An important conclusion of the approach laid out herein is
that intelligence is neither purely bottom-up nor strictly top-
down. Instead, higher-level cognition plays an important
role in the mechanisms of lower-level processes such as per-
ception and action, and vice versa. This view is supported
by neurological findings, as stated in (Spivey, Richardson,
& Gonzalez-Marquez 2005): “the vast and recurrent inter-
connectedness between anatomically and functionally segre-
gated cortical areas unavoidably compromises any assump-
tions of information encapsulation, and can even wind up
blurring the distinction between feedback and feedforward
signals.”

Rather than intelligence and behavior emerging from a
hierarchical analysis of perception into higher-level con-
cepts, a continuous stream of information must flow in both
directions—from the perception and motor systems to the
higher-level concepts, intentions and goals, and back from
concepts, intentions, goals, and object features towards the
physically grounded aspects of cognition, shaping and bias-
ing those for successful operation.

Experimental data supports this hypothesis, finding per-
ception to be predictive (for a review, see (Wilson &
Knoblich 2005)). In vision, information is sent both up-
stream and downstream, and object priming triggers top-
down processing, biasing lower-level mechanisms in sen-
sitivity and criterion. Similarly, visual lip-reading affects
the perception of auditory syllables indicating that the sound
signal is not processed as a raw unknown piece of data (Mas-

saro & Cohen 1983)?. High-level visual processing is also
involved in the perception of human figures from point light
displays, enabling subjects to identify gender and identity
from very sparse visual information (Wilson 2001).

This evidence leads to an integrated view of human cogni-
tion, which can collectively be called “embodied”, viewing
mental processes not as amodal semantic symbol processors
with perceptual inputs and motor outputs, but as integrated
psycho-physical systems acting as indivisible wholes.

Our work proposes to take a similar approach to designing
a cognitive architecture for robots acting with human coun-
terparts, be it teammates, helpers, or scene partners. It is
founded on the hope that grounding cognition in perception
and action can hold a key to socially appropriate behavior in
a robotic agent, as well as to context and temporally precise
human-robot collaboration, enabling hitherto unattained flu-
idity in this setting.

Architecture

Inspired by the principles laid out above, we are developing
a cognitive architecture for robots that follows an embod-
ied view. The following sections describe some of the main
components of the proposed architecture.

Perception-Based Memory

Grounded in perceptual symbol based theories of cognition,
and in particular that of simulators (Barsalou 1999), we pro-
pose that long-term memory and concepts of objects and ac-
tions are based on perceptual snapshots and reside in the var-
ious perceptual systems rather than in an amodal semantic
network (Figure 1).

These percept activation are heavily interconnected both
directly and through an associative memory mechanism.
Perceptions of different modalities are connected based on
concurrency with other perceptual snapshots, as well as con-
currency with perceptions generated by simulators during
activation.

Bidirectional Percept Trees Incoming perceptions are fil-
tered through percept trees for each modality, organizing
them on a gradient of specificity (Blumberg ez al. 2002). At
the same time, predictions stemming from more schematic
perceptions bias perceptual processes closer to the sensory
level. An example of how higher level parsing is both con-
structed from and influencing lower level perception is pro-
posed in a separate technical report (Hoffman 2005). In that
work, intentions are build up gradually from motor trajec-
tories, actions, and goals. Conversely, probability distribu-
tions on intentions bias goal identification, which in turn set
the priors for action detection, and subsequently motion es-
timation.

Retention Perceptions are retained in memory, but decay
over time. Instead of subscribing to a firm division of short-
and long-term memory, the proposed architecture advocates

2As reported in (Wilson 2001).
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Figure 1: Perception-Based Memory

a gradient information-based decay in which more specific
perceptual memory decays faster, and more general percep-
tual information is retained longer. Decay is governed by the
amount of storage needed to keep perceptual memory at var-
ious levels of specificity, retaining more specific memories
for a shorter period of time, and more schematic perceptions
for a longer time span.

Retention is also influenced by the relevance of the per-
ceptual information to the current task and their attentive
saliency: perceptual elements that are specifically attended
to at time of acquisition will be retained longer than ones
that were peripheral at that time. In a similar vein, affec-
tive and motivational states of the system can also influence
memory retention.’

For example in the visual processing pathway, raw im-
ages are retained for a short period of time, while line ori-
entations, colors, blob location, overall rotation, and fully
recognized objects remain in memory for a longer time span
(Figure 2).

Weighted Connections Memories are organized in activa-
tion networks, connecting them to each other, as well as to
concepts and actions in associative memory (the dotted lines
in Figure 1). However, it is important to note that connec-
tions between perceptual, conceptual, and action memory
are not binary. Instead, a single perceptual memory—for
example the sound of a cat meowing—can be more strongly
connected to one memory—Iike the proprioceptive memory
of tugging at a cat’s tail—and more weakly connected to an-

3Such an approach could also explain why certain marginal per-
ceptions are retained for a long time if they occurred in a traumatic
setting.
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Figure 2: Perceptual memory is filtered and remains in
memory for a variable amount of time, based—among
others—on the information at each specificity level.

other memory, such as that of one’s childhood living room
scent.

Weights of connectivity are learned and refined over time.
Their value is influenced by a number of factors, such as
frequency of co-ocurrance, attention while creating the per-
ceptual memory, and affective states during perception.

Simulators and Production A key capability of percep-
tual memory is the production of new perceptual patterns
and concepts. Using simulation, the activation of a per-
ceptual symbol can evoke the construction of both an ex-
perienced and a fictional situation. Citing (Barsalou 1999):
“Productivity in perceptual symbol systems is approxi-
mately the symbol formation process run in reverse. During



symbol formation, large amounts of information are filtered
out of perceptual representations to form a schematic rep-
resentation of a selected aspect. During productivity, small
amounts of the information filtered out are added back.” In
the proposed system, the production of such memories is
made possible by running a constructive process on the tem-
porally information-based filtered perceptive memories de-
scribed above.

The produced perceptual activations can be used in rea-
soning as well as guiding motor activity. In addition, ac-
cording to the principle of top-down processing, they also
bias current perception by both affecting the filtering in the
percept tree and the parameters of the sensory modules.

Action-Perception Activation Networks

Associative memory not only governs and interconnects per-
ceptual memory, but also establishes weighted connections
between concepts and actions (see: Figure 1). Inspired
by architectures such as Contention Scheduling (Cooper &
Shallice 2000), activities, concepts, and perceptions occur in
a perpetually updating activation relationship.

Action-Perception Activation Networks operate as fol-
lows: currently acquired perceptions exert a weighted in-
fluence on concepts and activities, leading to (a) potential
action selection; (b) the simulation of other, related percep-
tions; and (c) the activation of an attention mechanism which
in turn impacts the sensory layer and the perceptual task,
aiding in its pertinent operation.

Thus, for example, the presentation of a screwdriver may
activate a grasping action, as well as the activity of apply-
ing a screwdriver to a screw. This could in turn activate
a perceptual simulator guiding the visual search towards a
screw-like object, and the motor memory related to a clock-
wise rotation of the wrist. A key point to notice regarding
these networks is that they don’t follow a single line of ac-
tion production, but instead activate a number of interrelated
mechanisms which can — if exceeding a certain threshold
— activate a particular motor pattern.

Bregler demonstrated a convincing application of this
kind of top-bottom feedback loop in the realm of Machine
Vision action recognition (Bregler 1997), and others argued
for a symbolic task-level integration of schemas, objects,
and resources (Cooper & Shallice 2000). In this work, we
aim to span this approach across both action selection and
perception.

Intentions, Motivations, and Supervision

The above architecture is predominantly suited for govern-
ing automatic or routine activity. While this model can be
adequate for well-established behavior, a robot acting jointly
with a human must also behave in concordance with internal
motivations and intentions, as well as higher-level supervi-
sion. This is particularly important since humans naturally
assign internal states and intentions to animate and even
inanimate objects (Baldwin & Baird 2001; Dennett 1987;
Malle, Moses, & Baldwin 2001). Robots acting with people
must therefore behave according to internal drives as well
as clearly communicate these drives to their human counter-
part.
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Figure 3: Motivational drives are used to form plans over-
riding or swaying action selection in the Action-Perception
Activation Network.

It thus makes sense to embellish the perception-action
subsystem with supervisory intention- and motivation-based
control that affects the autonomic processing scheme out-
lined above (Figure 3). At the base of this supervisory
system lie core drives, such as hunger, boredom, attention-
seeking, and domain-specific drives, modeled as scalar flu-
ents, which the agent seeks to maintain at an optimal level
(similar to (Breazeal 2002)). If any of those fluents falls
above or below the defined range, they trigger a goal re-
quest. The number and identity of the agent’s motivational
drives are fixed. Goals are represented as a vector indexed
to the various motivational drives, and encoding the effect
of achieving a goal on each of the drives. This representa-
tion can be used by the Goal Arbitration Module to decide
what goal to pursue. The relative deviance of the motiva-
tional drive from its optimal value in combination with the
expected effect can be used to compute a utility function for
selecting each goal. The most useful goal according to this
function is thus selected.

Once a goal is selected, a planner is used to con-
struct a plan that satisfies the goal. The planner uses
recipes for achieving a goal in a STRIPS-like pre-
condition/action/effect representation. If the planner has a
recipe that achieves a certain goal (i.e. a hierarchical set of
actions from its action space with the overall effect of sat-
isfying the goal), it will attempt to use this recipe, while
monitoring the perceptual input to evaluate goal satisfaction
(in a similar manner as described in (Hoffman & Breazeal
2004)). Some recipes may be innate, although none need to



be. Given a set of actions and a set of goals, the planner can
build up new recipes by searching the action space using, for
example, regression planning (Russell & Norvig 2002).

The action space is modeled as a set of STRIPS-like
precondition/action/effect actions, and their translation into
paths into motor graph(s). The action space-motor graph
relationship is modeled as described in (Blumberg et al.
2002).

Actions that are selected based on the above approach in-
fluence, and in some cases override, the automatic action se-
lection mechanisms in the action-perception activation net-
work. Once an action is activated in such a way, it also trig-
gers simulators and guides perception as described above.

This motivation-goal-action model holds an additional
benefit for joint action, as it can be used as a basis for an
experienced-based intention reading framework, as we de-
scribed in a separate technical report (Hoffman 2005).

Joint Action Derivatives

The approach presented in this paper aims to allow for
a number of important cognitive mechanisms that underly
fluid human-robot co-acting. We plan to investigate these
derivatives under the proposed approach:

Attention The generic “perception problem” is quite in-
tractable. Humans (and probably other animals) use at-
tention systems to filter incoming data, and attention has
also proved useful for robotic agents (Breazeal & Scas-
sellati 1999). In addition, mutual attention is a key fac-
tor in the successful behavior of a human-robot team. In
the framework advocated herein, attention emerges from
the interaction between actions, concepts, and perceptual
processes, and in a top-down fashion biases sensation and
perception. Attention also determines learning in the sys-
tem, by affecting the weighted ties between elements in
perceptual memory as well as between perceptional mem-
ory and concepts.

Routine Action Performing a well-known task is likely to
involve non-conscious and sub-planning action selection
mechanisms. In humans, routine action performance is
often found to be faster and more robust than conscious
or planned activity. Teams and ensembles working to-
gether increasingly rely on routine action for action coor-
dination, and these become more emphasized when tight
meshing of physical activity is required. We believe that
true fluidity in human-robot collaboration can only be
achieved through reliance on these “privileged loops” be-
tween perception and action.

Practice In direct relation to routine activity, practice is an
important facet of joint action, and of any kind of per-
formance art. The mechanisms underlying repeated prac-
tice of a task, and in particular joint practice to achieve
fluid collaboration are not well understood. We believe
that the above architecture allows for a novel investiga-
tion into concepts of practice and refinement of routine
joint activities.

Flexible Resolution Cognition often appears to conduct it-
self on a ‘need-to-know’ or ‘need-to-do’ basis. It can be

argued that planning and adjustment of trained concepts
and action schemas only occurs when well-practiced rou-
tine activation models fail. Similarly, planning, while in-
formed by lower-level perceptual phenomena, does not
need to delve into percept-level resolution unless more in-
formation than available is needed. Perception and action
can rely on existing patterns and routine simulations un-
less there is a significant mismatch between the expected
and the observed. An embodied approach spanning both
low-level processing and high-level goal-directed action
could allow for the flexibility of cognition needed for
human-robot joint action.

Anticipatory Action Among other factors, successful co-
ordinated action has been linked to the formation of ex-
pectations of each partner’s actions by the other (Flanagan
& Johansson 2003), and the subsequent acting on these
expectations (Knoblich & Jordan 2003). We have pre-
sented initial work aimed at understanding possible mech-
anisms to achieve this behavior in a collaborative robot
(Hoffman & Breazeal 2006). A further research goal of
this work to evaluate whether more fluid anticipatory ac-
tion can emerge from an approach that uses perception-
action activation as its underlying principle.

Mutual Responsiveness Finally, a central goal of this
work is to achieve appropriate mutual responsiveness be-
tween a robot and a human. Mutual responsiveness has
been strongly tied to joint action (Bratman 1992). By re-
acting to external stimuli in a combined autonomic and
supervised fashion, we hope to be able to demonstrate
truly fluid mutual responsiveness as a result of the work
proposed herein.

Discussion

Surprisingly, while the existence and complexity of joint
action has been acknowledged for decades, and its behav-
ioral operation has been investigated extensively, the neuro-
cognitive mechanisms underlying shared activity have only
received sparse attention, predominantly over the last few
years (for a review, see (Sebanz, Bekkering, & Knoblich
2006)). Much of the work in this field exploring the cogni-
tive activity of two humans sharing a task builds on embod-
ied structures of cognition, and emphasizes the non-verbal
aspects of collaboration. It is our belief that this approach is
the most promising for robots working together with people,
as well.

Notions of embodiment are not new in robotics research.
It has been fifteen years since Brooks postulated that the
“fundamental decomposition of the intelligent system is not
into independent information processing units which must
interface with each other via representations. Instead, the
intelligent system is decomposed into independent and par-
allel activity producers which all interface directly to the
world through perception and action, rather than interface
to each other particularly much.” (Brooks 1991) In this con-
text, Brooks advocated incremental design of simple reac-
tive robots. Today, it seems that embodied approaches are
still mostly confined to simple robots interacting with an
inanimate environment.



Designers of robots interacting with humans, however,
have taken little note of theories of embodied cognition,
with most systems translating perception into amodal sym-
bols for further processing. While active perception has
been investigated (Aloimonos 1993; Breazeal & Scassel-
lati 1999), and top-down influences in object recognition
have been explored on low-level vision tasks (Bregler 1997;
Hamdan, Heitz, & Thoraval 1999), a full human-robot inter-
action system taking advantage of the ideas brought forth in
this paper has yet to be implemented.

Conclusion

To date, most robots interacting with humans still operate
in an non-fluid command-and-response manner. In addi-
tion, most are based on an amodal model of cognition, em-
ploying relatively little embodied intelligence. In the mean-
time, neuroscience and psychology have gathered impres-
sive evidence for a view of cognition that is based on our
physical experience, showing that concept representation is
perception- and action-based; that perception and action are
coupled not only through supervisory control; and that intel-
ligence is top-down as much as it is bottom-up.

We believe that these mechanisms are at the core of joint
action. To build robots that display a continuous fluid mesh-
ing of their actions with those of a human, designers of
robots for human interaction need therefore take these in-
sights to heart. We have presented a framework that im-
plements the above ideas and discussed possible behavioral
derivatives crucial to fluid joint activity emerging from the
proposed architecture.
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