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Abstract

As robots enter the human environment they must be
able to communicate and cooperate with novice users.
Towards this goal, understanding human nonverbal be-
havior is a critical skill. This includes not only recog-
nizing human’s actions, but also inferring mental states
from observable behavior. This capability would allow
a robot to offer predictive and relevant assistance to a
human. Simulation Theory argues in favor of an em-
bodied approach for how humans infer mental states of
others (e.g., intents, beliefs, affect, etc.). This theory ar-
gues that humans reuse parts of their cognitive struc-
ture used for generating behavior to simulate and de-
tect the behavior of others. Inspired by this theory, we
describe our simulation-theoretic approach and imple-
mentation that enables a robot to monitor the human by
simulating their behavior within the robot’s own gener-
ative mechanisms on the motion, action, and perceptual
levels. This grounds the robot’s information about the
user in the robot’s own systems, allowing it to make in-
ferences about the human’s goals and knowledge that
are immediately useful for providing helpful behavior
such as helping to complete an action or pointing out an
occluded object. We feel that designing individual sys-
tems of the robot to allow for this type of dual use, and
reusing them in this manner, is a powerful technique for
designing robots that interact with humans.

Introduction
Today, robots are largely considered to be complex tools
operated by highly trained specialists; some, like assembly
line robots, need initial programming to carry out a repeti-
tive task, while others, such as planetary explorers, require
the constant supervision of tele-operators. While requiring
a trained operator to manage each robot may be feasible
for these situations, as robots enter into the human environ-
ment, they will need to serve as helpers and teammates for
untrained humans (care for the elderly, domestic assistant,
etc.).

An important element of cooperative behavior is the need
to understand a participant’s actions and infer their goals
from their external appearance and surrounding context. Ex-
periments have show that human infants develop the ability
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to understand actions according to inferred goals as early as
6 months (Woodward, Sommerville, & Guajardo 2001). At
18 months they are able to imitate the goal of an unsuccess-
ful action (Meltzoff 1995). Understanding the actions of oth-
ers in terms of their goals is a natural level of representation
of behavior in humans. For instance, 3 year old children have
been shown to imitate actions based on inferred goals rather
than perceived movements (Gleissner, Meltzoff, & Bekker-
ing 2000).

Understanding actions in intentional terms through obser-
vation will enable the robot to see through surface level ob-
servable behavior to understand what the person is trying to
do rather than just what they are physically doing at that very
moment. This will allow the robot to provide assistance that
is relevant to the person’s goal, an important skill to partici-
pate in cooperative interactions with humans.

In order to approach the problem of action recognition and
goal inference, we are using ideas drawn from the develop-
ment of this capability in human children. Simulation theory
holds that certain parts of the brain can have a dual use; they
are used to not only generate our own behavior and mental
states, but also to predict and infer the same in others. More
specifically, to understand another person’s mental process,
we step into their shoes to determine the consequences. That
is, we use our own similar brain structure to simulate the
thoughts of the other person (Davies & Stone 1995).

In order to place oneself in the situation of another, it is
critical to be able perceive situational information about an-
other and use it as input into one’s own cognitive architec-
ture. Perceiving the position and motion of another person
and mapping it onto your own body (skills required for im-
itating), then, become important requirements for applying
these theories.

(Williams et al. 2001; Gallese & Goldman 1998) pro-
pose that a class of neurons discovered in monkeys, labeled
mirror neurons, are a possible neurological mechanism un-
derlying both imitative abilities and Simulation Theory-
type prediction of the behavior of others and their men-
tal states. These neurons show similar activity both when
a primate carries out a goal directed action, and when it
observes it performed by another (Rizzolattiet al. 1996;
Galleseet al. 1996). (Barsalouet al. 2003) presents addi-
tional evidence that when observing an action, people acti-
vate some part of their own representation of that action as



well as other cognitive states that relate to that action.
This work provides a working model for how a simula-

tion theoretic system could infer from external perception
the goals and beliefs of others by utilizing its own action,
motor production, and belief modeling systems. We believe
that re-using these modules (and in the future, possibly oth-
ers) is a useful technique to help understand the mental state
of the human in terms useful to a robot. The work described
here is of course situated within our own behavior archi-
tecture, however we believe that the idea of re-using these
systems (and designing them with their potential re-use in
mind) is an idea that could be applied to any similar sys-
tem. Not only does a simulation theoretic design aid in the
implementation of the system by allowing wide re-use of
components, but it also grounds perceptions and inferences
about the human in the robot’s own representations, making
it easier for the robot to perform useful behavior based on
this data.

This paper first describes the techniques for the re-use of
three separate systems, then describes the benefit of that re-
use in the Demonstration section.

Platform
Robot This implementation runs on the Leonardo robot
(Leo), a 63 degree of freedom humanoid robot. (figure 4)

Sensors Leo sees the world through two environmentally
mounted stereo vision cameras and two eye cameras. One
stereo camera is mounted behind Leo’s head for detecting
humans near Leo. The second stereo camera looks down
from above, and detects objects in Leo’s space as well as
human hands pointing to these objects. Leo can use his eye
cameras for fine corrections to look directly at objects. Leo
also has access to data from the Axiom ffT facial feature
tracker. The system provides data as the 2 dimensional im-
age coordinates of various facial features, such as the inner
corner of the eyebrow or the top of the mouth.

In order for Leonardo to perceive the pose and motions
of a human interacting with him, we use a Gypsy motion
capture suit. This suit has potentiometers mounted near the
joints of the human to determine their joint angles. This suit
is worn by the human interacting with Leo (figure 4). In the
future, we plan to replace the use of this suit with a vision
solution to allow for more natural interactions.

Background on Simulation Theory for Robots
Mapping demonstrated human movements into the robot’s
motor space has been discussed in Programming by
Demonstration (PdB) applications (Kang & Ikeuchi 1997;
Friedrich, Holle, & Dillmann 1998). PdB is used as a pro-
gramming shortcut for quick, intuitive training of robots us-
ing human demonstration of tasks. This work focuses on
motor skill acquisition rather than detection of known mo-
tor skills. (Lieberman & Breazeal 2004) explores mapping
movements into the space of a robot and detecting bound-
aries between actions, but from the perspective of teaching
new motor skills.

A number of motor learning efforts for robotic systems
have looked to mirror neurons for their biological inspira-

tion, ex (Schaal 1999); some even use simulated mirror neu-
rons to recognize movements of both the robot and the hu-
man during interactions (Zukow-Goldring, Arbib, & Oztop
2002). These systems examine motor learning and motor tra-
jectory recognition, but have not yet addressed using these
abilities to infer hidden mental information about the hu-
man. (Buchsbaum 2004) uses a similar simulation theoretic
action inference but for instrumental referencing.

There is a rich literature on plan recognition and using
recognized plans to infer goals (see for example (Carberry
2001) for a review). Our system uses a simple hierarchical
task structure similar to what is used in many plan recog-
nitions systems; however we combine multiple types of in-
formation (motion, context, and a model of the human’s be-
liefs) to infer the human’s intent in a non-verbal task, then
use this same task structure to determine helpful behavior
for the robot to perform.

Architecture for Simulation Theory
Our implementation addresses mapping perceived body po-
sitions of another into the robot’s own joint space, then using
that information along with contextual clues to simulate the
human’s actions and infer their goals. Further, Leo can reuse
his perceptual systems to model the beliefs of the human and
provide helpful hints based on this information. See Fig. 2
for a system diagram. Each of these levels of inference op-
erates independently, and can provide useful information on
its own. Simple motor mapping can allow for imitation. Ac-
tion and goal inference can help the robot monitor the hu-
man’s success and provide help if needed. Belief modeling
allows the robot to attempt to track what the human knows.
These systems operating together, however, allow the robot
to perform more complicated inferences. Combining motion
matching (to help determine the human’s action) with goal
inference and belief modeling allows the robot to provide
more sophisticated assistance such pointing out information
unknown but necessary to the human and their current goals.

Movement Level Simulation
This section describes the process of using Leo’s perceptions
of the human’s movements to determine which motion from
the robot’s repertoire might be being performed. The tech-
nique described here allows the joint angles of the human to
be mapped to the geometry of the robot even if they have
different morphologies, as long as the human has a consis-
tent sense of how the mapping should be and is willing to go
through a quick, biologically inspired calibration process.
Once the perceived data is in the joint space of the robot,
the robot tries to match the movement of the human to one
of its own movements; representing the human’s movements
as one of the robot’s movements is more useful for further
inference than a collection of joint angles.

The motor system of the robot is based on a pose-graph
structure (Blumberget al. 2002), consisting of a directed
graph of poses. Each pose is a collection of joint angles that
represents one frame of an animation. Paths through this di-
rected graph of poses form the motions that the robot can
produce.
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Figure 1: Mapping perceived human joints onto the robot’s
skeleton to allow for comparison between joint configura-
tions of robot and human

Intermodal Mapping The mechanism described here to
discover the mapping from perceptions about the human’s
position into the joint space of the robot is inspired by Melt-
zoff’s Active Intermodal Mapping (AIM) hypothesis (Melt-
zoff & Moore 1997) which addresses the mapping process
for the facial imitation in infants by proposing that they share
a common representation for the perception and production
of motor movements. We use the joint space of the robot
as this representation and thus need no conversion to out-
put motor commands. However, incoming sensor data of
the robot must be converted to this format. The AIM hy-
pothesis provides inspiration for this step, by theorizing that
infants refine a similar mapping through an imitative inter-
action with a caregiver. In this interaction the infant motor
babbles, or simply tries out new motor configurations. When
the caregiver imitates the infant, the infant observes this and
uses that imitation as a mirror to refine its own mapping from
perception of facial expressions to their production.
Facial Mapping The robot’s face perception comes from
the Axiom ffT system, which tracks facial features and out-
puts their position as 2d coordinates. These 2d coordinates
must be mapped onto the robot’s joint space. This process
is complicated by the fact that there is not a one to one cor-
respondence between the tracked facial features and Leo’s
joints. A number of algorithms exist that can be applied to
map data from one space to another given sufficient labeled
training examples to train a model. To acquire this training
data, the robot participates in an imitative interaction with
the human.

Within the framework of the imitative interaction, the
robot identifies when the human participant is imitating it,
and then stores a snapshot of the current facial feature data
and the robot’s own current joint configuration. Before the
mapping is trained the robot cannot detect an exact corre-
spondence between the human’s facial features and its own
pose, thus identifying when the robot is being imitated is
tricky at this stage. However, a good metric is provided by
the timing of raw movement in the perceptual data; if the
perceptual data exhibits significant movement right after the
robot moves its joints, it is likely that the human is imitating,
and a snapshot can be taken.

Once enough data has been acquired, a mapping between

the perceived feature coordinates and the robot’s joint space
can be trained. In this case we found a simple 2 layer neural
net was sufficient to approximate the function. Separating
the input data based on the different parts of the face al-
lowed us to train a separate network for each part of the face.
This greatly reduced the number of examples needed to train
an effective mapping, since each network is responsible for
fewer independent degrees of freedom. We found that in this
case, about 2 examples per pose and about 4 poses per facial
feature (i.e. left eye, right eye, mouth) were sufficient. Once
these networks are trained, new perceived facial coordinate
data can be mapped into the robot’s pose space, enabling the
robot to imitate the human. For a more complete treatment
of this facial mapping process see (Breazealet al.2005).

Body Mapping A similar technique is employed in map-
ping perceived arm and torso movement into the robot’s joint
space. In this case, joint positions of the human are observed
using a mechanical motion capture suit described above. The
robot motor babbles in different regions (each arm and the
torso) with the human imitating. When enough poses have
been recorded, a mapping is created (in this case using radial
basis functions), and the robot can mimic the movements of
the human.

Matching Joint Angles to Trajectories The above sec-
tions describe how to directly map from observations to the
robot’s own joint space, which can be useful for mimicry,
but is somewhat limited in its usefulness for drawing infer-
ences. To gain more representational power, we match this
joint angle data against the trajectories through the robot’s
pose-graph, and thus determine which of the robot’s motions
is most closely related to the motion the human is producing.
This is a much more concise representation of the data than
sets of joint angles, and it will prove useful in the following
section.

Early work for this system classified incoming trajecto-
ries using a domain specific metric that worked well with
the limited number of animations the robot was using; how-
ever, we are moving towards a more general system based on
Morphable Models (Brooks, A.G.et al.2005), which are de-
signed for comparison of spatio-temporal data such as these
joint trajectories.

Goal Level Simulation

The action representation described here is intended to not
only allow the robot to perform a set of actions, but also in-
trospect over them to determine which actions a human is
performing and even infer certain mental states (most no-
tably their goal, based on what the robot’s goal would be if
it were performing the action in their position). Ideally the
same information is needed to detect actions and make infer-
ences as to perform them, so when actions are designed (and
in the future, learned) only accomplishing the forward task
need be taken into account, and the detection and simulation
will come for free. This design goal is followed except for
one concession, which comes in determining which object a
human is acting upon - this mechanism requires a special de-
tector (a Parameter Generation Module, or PGM) described



below.

Action Structure The robot’s actions are composed of a
hierarchy of Action Segments and Conditions. Action Seg-
ment modules perform a task (intended to be atomic, on the
level of a single motion), while Condition modules make an
evaluation about some state of the world or the creature’s in-
ternal state. A Condition that follows an Action Segment is a
goal of that segment - it is expected that after the completion
of that segment, the Condition will evaluate to true. A Con-
dition that precedes an Action Segment is its precondition -
it is necessary that that Condition evaluate to true before the
action is attempted (See Figure 3).

This relationship between Action Segments and Condi-
tions allows larger structures to be created where the goal of
one Action Segment becomes the precondition of a later Ac-
tion Segment. Compound tasks are specified as a hierarchy
of Actions Segments and Conditions. To achieve some de-
sired state, only the desired Condition need be activated, and
the system will traverse the hierarchy completing precondi-
tions and Action Segments as necessary until the Condition
is fulfilled (or it becomes known that the Condition cannot
be fulfilled).

Conditions have two modes of operation. If queried, they
simply determine if they have been satisfied (“Is the button
on?”). They can also be activated, in which case they try to
achieve themselves. In this case, the condition will activate
each of its action segments in turn until it is achieved, or until
it runs out of segments and still is not achieved. A standard
condition relates to some state of the world; it uses the belief
system of the robot to determine if it is satisfied (see the next
section for a brief description of the robot’s belief system).

Action Segments contain a list of preconditions. When an
Action Segment is activated, it first verifies that all its pre-
conditions are met. Any Conditions that are not met are also
activated. If the Action Segment can achieve all of its pre-
conditions by activating them, it will do so and then activate
itself. If any of its preconditions fail to complete, the Action
Segment will terminate in failure and it will not attempt to
perform itself.

The actual inner behavior invoked by an Action Segment
structure is often a single motion performed by the robot,
although it could be something more sophisticated. Often-
times these motions have additional parameters, such as
where or on what object the robot should perform the mo-
tion. The Action Segment gets this information in forward
operation from a higher level decision process (not covered
here); when observing a human’s action this information is
not directly available in the same way, so these parameters
come from an associated PGM (see next section).

Simulating the actions of others to infer their goals The
system for simulating the actions of others in order to infer
their goals begins by first attempting to determine which ac-
tion segment they are performing. One of the key inputs into
this system is the motion classifier described in a previous
section. Whenever the robot classifies a motion of the hu-
man as one of its own, it triggers a search through its set of
action segments to see what action segments might produce
that motion (Each action segment can be associated with a

movement it produces - in the current architecture, only ac-
tions with an associated movement can be recognized). The
set of matching action segments are further narrowed by ex-
amining the context required to perform each one. The con-
text refers to the necessary conditions in the world state for
the action to be performed - for example, in order push a but-
ton, there must be a button nearby. For the robot, the context
required for an action segment is represented as the set of
parameters necessary to perform that segment, as described
below.

In normal operation, when the robot decides to accom-
plish some condition, that decision process will supply any
parameters needed for that condition (such as which object
to act on). However, when detecting the action in an ob-
served human, the robot is not privy to that hidden infor-
mation. Instead, each action is provided with a PGM that
attempts to generate the relevant parameters. The most com-
mon module is one that detects objects that are close to
the human’s hand. For example, if the robot is determining
which button a human is attempting to press, it will guess
that it is the button closest to the human hand. This mod-
ule works by examining data from the robot’s belief system,
where the position of the human and other objects in the
world are tracked. These modules can also indicate a failure
to generate the appropriate parameters, for example if there
is no button near the human’s hand. This failure indicates
that the context for the given action segment is invalid; other
action segments with similar motions will be considered and
if none have an appropriate context there will be no match
for the human’s current activity.

For an action segment to be eligible for consideration,
it must produce the motion currently being observed, and
also have currently relevant parameters as determined by its
PGM. Once an action has been selected, the robot infers
that the human’s goal would be the same as its own, were
it currently performing the action. Since it has mechanisms
to determine its own success or failure (by evaluating the
goal condition for that action segment), it can monitor the
success of the human. Currently the robot helps out by re-
performing the action of the human if they fail (as it is easily
able to do, since the structure used to detect the action is the
same used by the robot to perform the action - also any rel-
evant action parameters have been filled in by the PGM). In
the case of a compound action, it also examines the precon-
ditions of the action segment that the human is attempting.
If a precondition is not satisfied, the robot determines that
this might be the reason the human has failed and tries to
accomplish the precondition for them. These are relatively
simple responses to these inferred states, but in the future
these inferences could be used to inform more sophisticated
behavior.

Belief Level Simulation
We believe that for successful cooperative interaction mod-
eling the human’s beliefs about the task state is important.
For example, a human may not be able to see important in-
formation due to occlusion, or a new arrival may need to be
brought up to speed.

Leo keeps track of information about the world using his
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Belief System (Blumberget al. 2002). Data comes in from
Leo’s sensors, and passes through his perception system. In
the belief system, the robot sorts and merges data from the
perception system to attempt to determine what data corre-
sponds to new information about known objects, and what
data indicates the presence of a new object. The object rep-
resentation consists of a history of properties related to each
perceived object.

In the spirit of simulation theory, we reuse that mecha-
nism to model the beliefs of the human participant. For this,
the robot keeps a second set of beliefs that are produced
through the same mechanism - however, these beliefs are
processed from the visual perspective of the human. This is
different from simply flagging the robot’s beliefs as human
visible or not, because it reuses the entire architecture which
has mechanisms for object permanence, history of proper-
ties, etc. By reusing the entire system you can get more
complicated modeling: for example, this approach can keep
track of the human’s incorrect beliefs about objects that have
changed state while out of their view.

This technique has the advantage of reusing a lot of archi-
tecture, but also of keeping the model of the human’s beliefs
in the same format as the robot’s. This is important for us-
ing the information, because all the mechanisms the robot
uses with its own beliefs can now be applied, in simulation,
to work with the model of the human’s beliefs. Currently
we use exactly the same processing to produce the human’s
beliefs as the robot’s, except that we apply a visual perspec-
tive filter for the human’s beliefs based on what they should
and shouldn’t be able to see - this allows the robot to keep
a model of what the human believes about the local world.
Further changes could easily be made to the human’s percep-
tual system - for example, if the robot believed that the hu-
man was colorblind, it could remove the color percept from
its processing of the human perceptual information, and then
none of the human beliefs would contain any color informa-
tion. You could even imagine modeling what the robot thinks
the human thinks the robot knows using this mechanism, by
maintaining a third set of beliefs that go through the humans
filter as well as one additional filter.

This model of the human’s beliefs is used by the robot
to determine how best to help the human accomplish tasks.
In order to do this, the robot first uses the mechanism de-
scribed above to determine what action segment the human

is performing. It then determines if the human has enough
information to successfully complete the action, and if the
human does not it points out the relevant information to the
human in an attempt to get them to discover it. For exam-
ple, if an object is hidden behind an occlusion, the robot can
point to it in an attempt to get the human to look around the
obstruction and discover the object.

As described above, the robot has a mechanism to help
the human by re-performing a failed action, or by perform-
ing another section of a compound action. To do this it uses
its PGM to determine the appropriate parameters (generally
a target object) for repeating a human’s action. This same
mechanism is used in this context to determine if the human
has enough information. For each necessary action segment
that is part of the compound action the human is perform-
ing, Leo attempts to generate the appropriate parameters to
perform that action using the action’s PGM(without actually
performing the action). However, instead of using its own
beliefs as input to the PGM, the system attempts to generate
the parameters based on its model of the human’s beliefs.
Thus, the robot is trying to see if it could accomplish each
action segment with the beliefs that the human has. So for
example, if as part of a compound action “Button A” must
be pressed, the action segment’s PGM will fail if no “Button
A” is present. If the human has no belief for “Button A”, then
when the robot puts itself in the position of the human and
tries to determine if it could complete the action, it will de-
termine that it could not, and that the action segment would
fail. The robot can then point out the object to human and
try to get them to learn about it.

The mechanism described here for belief modeling does
come with significant scalability limitations. Maintaining
the entire set of beliefs of the participant is costly to the
robot’s behavior system, and becomes infeasible with more
than a few humans. To handle this, a good solution might
be to attend fully to only one or two humans at a time, and
only keep a full model of the humans that are currently being
attended to.

Demonstration
To demonstrate the concepts described here, we have cre-
ated an example action system for the robot that can show
off many of the ideas discussed here. The structure of its
actions can be seen in figure 3. The actions are somewhat
contrived because they are designed to use existing button
pushing skills of the robot, but they allow demonstration of
the key points.

Motion Classification
Although there is no specific way to observe the output of
the motion classification system in this scenario, it is run-
ning all the time in these demonstrations. The motion classi-
fication is a critical piece of the data that allows the next two
demonstration sections to function properly.

Action/Goal Inference
The robot’s action and goal inference is shown here when the
human attempts to push one of the buttons. If the human per-
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Figure 3: Structure of Leo’s Action Segments and Condi-
tions for this demonstration. In forward operation, Leo (re-
cursively) performs each connected action segment until a
desired condition is satisfied. Leo detects a human doing one
of his action segments if they are performing that trajectory
and the parameter generator successfully finds appropriate
action parameters (i.e., context is correct).

Figure 4: Human fails to completely press button. Leo no-
tices and starts to achieve human’s goal, turning the button
on.

forms a pushing motion (detected through the motion clas-
sification system) and their hand is near a button (detected
through the parameter estimation system), the robot deter-
mines that they are trying to push that button. Based on the
structure of its own action, it infers that they are trying to
accomplish the goal of turning the button on. Further it eval-
uates their success by monitoring the state of the button, and
if they fail, it will accomplish their goal for them.

In the case of a locked button, Leo demonstrates that he
can perform a helpful action that is not simply repeating the
action of the human. In this case, if they perform a push
motion near a locked button, Leo still infers that their goal
is to turn on that button. However, if that button is indeed
locked, instead of repeating their action (and also failing, as
the button is locked), he achieves the precondition which the
human overlooked, allowing them to proceed to their goal
and demonstrating that he is goal oriented rather than action
oriented.

Belief Inference
To demonstrate Leonardo’s belief inference capabilities we
move to a simulated task since we can more readily manipu-
late the environment by adding and removing occlusions that
Leo can easily detect with simulated data. For this demon-
stration, we add an occlusion to the simulated environment
of the robot that blocks the human’s view of one of the but-

tons. Leo is keeping track of the human’s beliefs through
the mechanism described above, and because of his visual
perspective taking his model of the human’s beliefs is lack-
ing one button. When the human begins the Turn All Buttons
Off task, Leo notices the actions using the above mechanism.
He considers each required action segment and determines
if the human has enough information. Noticing that the hu-
man cannot complete the compound action because of the
obscured button, Leo performs an action to help them ac-
quire the missing information - in this case, pointing at the
button to encourage the human to look around the occlusion.

Discussion
The system described here was built in an architecture that
evolved from c4 (Blumberget al.2002). In many ways this
architecture is modular by design, separating behavior pro-
cessing into discrete pieces such as gathering perceptual in-
put, belief maintenance, action selection, and motor control.
However the modular concept being discussed here is the
idea of Simulation Theory, and how it can be applied to
existing systems to add mental state inference capabilities.
To a certain extent the parts of the system to be reused in
this manner must be designed with this re-use in mind -
they must be modular enough that they can be isolated and
reused, and they must have a data representation that sup-
ports enough introspection to work backwards from results
to cause. However, we believe that this idea can be applied
to other behavior architectures to help begin to model human
mental states.

We have been pleased with the success of employing these
simulation theoretic ideas within our architecture. Not only
have the techniques been useful at accomplishing our stated
tasks, but we keep finding that we get additional beneficial
behavior “for free” because of these design decisions. The
idea of simulation theory may or may not hold up as we gain
more evidence about the functioning of the human brain, but
it does seem to be a useful tool for the design of robotic
behavior.
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