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Abstract We present our implementation of a self-as-
simulator architecture for mental state manipulation through
physical action. The robot attempts to model how a human’s
mental states are updated through their visual perception of
the world around them. This modeling, combined with geo-
metrically detailed, perspective correct simulations of the
immediate future, allows the robot to choose actions which
influence the human’s mental states through their visual per-
ception. The system is demonstrated in a competitive game
scenario, where the robot attempts to manipulate the mental
states of an individual in order to win. We evaluate partici-
pants’ reaction to the system, focusing on their perception of
a robot with mental state manipulation capabilities.

Keywords Human robot interaction · Mental state
manipulation · Perspective taking

1 Introduction

This paper focuses on a demonstration of mental state manip-
ulation in a competitive game scenario and an evaluation of
human perceptions of this behavior. The motivation for this
work is to explore the connection between (hidden) mental
states of an embodied agent and the (observable and modifi-
able) world in which that agent exists: in particular, how can
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an agent modify inaccessible mental states of another agent
by manipulating the accessible world the two agents share.

“Mental state manipulation through physical action” may
sound unusual, however consider: every external action an
embodied agent takes is a physical action; if an agent does
cause a mental state change in another agent, it will be
through these actions. Agents can only act on the physi-
cal world (pointing, speaking, waving), but the goal of these
communicative actions is often not simply the physical action
of moving the arm or producing speech. Rather, those physi-
cal actions are mechanisms used to attempt to change a men-
tal state in the viewer/listener. A physical action alone will
not directly change another’s mental state; mental states are
only changed by the agent itself, based on its observations of
the world and its own internal mental processes. To attempt
a mental state change, an agent determines how to alter the
world so that an observer’s perceptual and mental processes
will bring about that change.

The implementation described here focuses on manipu-
lating mental states in this way by choosing the correct phys-
ical actions. Every action has potential mental state conse-
quences for surrounding agents. These changes are never
direct; instead, the actions can change the world, and the
perception of the changed world may cause agents to update
their mental states. To intentionally alter mental states at this
level of detail, our strategy is to have the agent model both
of these mappings:

1. Action Simulation (mental state → world) once an agent
has chosen to perform an action, how will that action alter
the world.

2. Mental State Simulation (world → mental state) how will
the changes to the world alter the mental states of other
agents.
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Using these mechanisms, the agent can perform Mental State
Manipulation by choosing and performing a set of actions
which bring about its mental state goals.

While speaking is a very useful physical action for convey-
ing mental states, mental state manipulation does not require
the use of language; the demonstration described here focuses
on visual perception and manipulation of simple “world-
modeling” mental states.

The mental states used in this implementation are mental
states the agents hold to internally model the physical world
around them such as object locations, properties, and rela-
tionships (e.g., “Red cup is being held by Agent2 at x, y, z”).
Thus the Mental State Simulation presented here focuses on
how the visual perception systems of other agents will update
their “world-modeling” mental states given the state of the
world and their visual perspective and occlusions (e.g., an
agent is modeled as knowing “Red cup at x, y, z” if and only
if that agent appears to have seen the cup there). The Action
Simulation focuses on how the agents’ actions alter the visi-
ble features of these objects, as well as altering the perceptual
context such as perspectives, occlusions, etc. (e.g., during
action performance an object may be visibly moved, or the
agent’s body might temporarily occlude an object from the
perspective of an observer). By combining Action Simulation
with Mental State Simulation, potential future actions can be
evaluated according to their predicted effects on the mental
states of other agents (e.g., what will Agent2 see if I perform
X ). This implementation’s Mental State Manipulation mech-
anism explores the space of possible future action sequences
to find a sequence of actions that achieves a desired set of
mental state goals

The following section (Sect. 2) motivates this implemen-
tation with research on human behavior and situates it within
the space of robotic systems in the areas of mental per-
spective taking and manipulation. We present a demonstra-
tion scenario in Sect. 3 which illustrates the mental state
manipulation capabilities of our system through a compet-
itive game played with a human. Section 4 describes our
self-as-simulator mental state manipulation implementation.
In Sect. 5 we present the results of a human-subjects study,
which found that participants were more willing to team with
and attribute mental states to a robot that can perform mental
state manipulation through physical actions.

2 Background

2.1 Human Perspective Taking

The ability of humans to perceive hidden mental states of
others is well studied. Researchers have shown that humans
can determine the goals behind observed actions [18], and
that similar brain responses occur upon performing one’s

own actions as well as observing the actions of others [20].
People are also able to both infer certain mental states of
others based on geometrically correct perception models
and maintain that model even when it differs from one’s
own [26,27]. Furthermore, inferring another’s mental state
can help with communication: researchers have shown that
people resolve the meaning behind ambiguous communi-
cations by attributing a communicative goal to the speaker
(alternative meanings that could have supported more spe-
cific communications can be eliminated) [7]. The use of
visual and mental perspective taking facilitate many human-
human interactions and communications, and we believe
that endowing a robot with these skills is crucial for allow-
ing a robot to communicate and interact naturally with
humans.

2.2 Perspective Taking and Manipulation Systems

One strategy to implement perspective taking is through re-
use of one’s own systems; e.g., by re-using perceptual or
mental processing mechanisms to conduct a simulation of the
other agent. Cassimatis et al. even show how certain proba-
bilistic and logical inference strategies could be implemented
as perceptual simulations [5]. While powerful, certain prob-
lems which appear to rely on these mechanisms can be solved
without simulation or even perspective taking: Trafton et al.
demonstrate a robot that learns “hide and seek” without rely-
ing on perspective taking [22,23]. Nevertheless, our strategy
is to enable the robot to perform perspective taking through
simulations which re-use the robot’s own systems to simulate
possible mental states in others.

Researchers have shown the usefulness of detailed percep-
tual modeling and visual perspective taking in a number of
domains, such as to improve the accuracy of activity recog-
nition [11], to resolve ambiguities in an operator’s command
[24], to approach a target while hiding from sight [14], and
to recognize a human’s action by comparing it to the robot’s
own library of first-hand experience [12].

Others have shown the value of using perspective taking
to simulate not only the sensory perspective but also the deci-
sion making of another agent to predict their next action in
competitive [16] and cooperative [13] scenarios.

Building on mental perspective taking used for infer-
ence, researchers have also created systems which incorpo-
rate mental state manipulation. In a simulated school setting,
researchers have shown agents that can plan actions based
on complex mental state consequences including affecting
nested beliefs (beliefs about beliefs) [17]. However, simu-
lated systems tend to abstract away the connection between
mental states and physical action, instead providing the
agents with actions that have well understood mental state
outcomes. Our work focuses on modeling the mental state
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consequences of physical, situated action performance, and
using these actions to achieve the desired results.

Moving from the virtual to physical world, others have
demonstrated robotic systems that determine the actions nec-
essary to modify the action choice or performance of another
agent in a desired way. In a cooperative example, a robot
chooses how to hold out its hand when receiving an object
based on a model of how this action will modify the “give”
action of the participating human [19]. In a deceptive exam-
ple [25], a hiding robot attempts to mislead the seeker by first
experimentally determining the visible evidence that would
cause the seeker to check a particular location (e.g., visible
tracks on ground), then producing that evidence while hiding
in a different location. In both these systems, the robot’s goal
is to change the action the other agent will perform. To do this,
the robot takes action to alter the world, which then causes
the other agent to perform the desired action. We focus on a
sub-part of this problem: given a desired mental state change,
how can the robot act to cause that mental state change in the
observer. In contrast to these systems, we do not have an a pri-
ori perceptual effect associated with each action; instead, we
simulate the physical performance of the action in the current
spatial context to capture the intended and unintended per-
ceptual consequences of the action for the observer and the
resulting mental state changes (“place object on table” may
not convey “object on table” to the observer if the robot’s
hand blocks the view). It is our belief that these techniques
are complimentary; a fielded system could benefit from using
the above mechanisms for cases where the perceptual effects
of certain actions are pre-determined, avoiding the extra time
cost of performing the geometric simulations presented here.

2.3 Perceptions of Adversarial Robots

Other researchers have also studied human reactions to a
competitive robot that defeats them in an unexpected man-
ner; researchers have shown that a robot that openly cheats to
win in a game of “rock paper scissors” elicits greater attribu-
tions of mental states from the participants [21]. Rather than
cheating, we focus on reactions to a robot capable of mental
state manipulation in a deceptive scenario. We embrace the
definition of deception as “the process by which actions are
chosen to manipulate beliefs so as to take advantage of the
erroneous inferences” [6]. We focus on the subproblem of
how a robot chooses its actions so as to achieve a specific
belief manipulation, given that such an interaction is medi-
ated by the physical world. A more detailed definition could
include “the process by which actions are chosen to [alter
the physical world such that a perceiver’s belief is updated
in a targeted manner].” We demonstrate these abilities using
a deceptive scenario, however the mechanisms for this sub-
problem can apply equally well to a cooperative scenario.

Robot

Human

Robot's
Objects

Human's
Objects

Robot's
Goal

Human's
Goal

Dividers

Fig. 1 Top down view of the demonstration scenario, a competitive
game between the human and the robot. The robot stays on the upper
part of the diagram pictured, and the human on the lower part. Each
player has access to a matching set of objects on the left side, and
each has their own goal area on the right side. The game ends when
each player has placed an object into their goal—the robot wins if the
two players placed different objects, the human wins if the objects are
the same. Occlusions block the view of each player from the opposing
player’s object and goal areas, however they can see each other as they
travel between the object repository and goal

3 Demonstration Scenario

The ability to form and act on mental state goals is a key
ingredient to a robot’s ability to robustly communicate and
to maintain common ground. However, in a competitive sce-
nario this same ability may be called deception. In both
cases the robot intentionally modifies the world (taking into
account the perceptual capabilities of the target agent) to pro-
duce desired mental state effects in another agent, however in
a competitive scenario those mental states may be divergent
from the ground truth or otherwise to the disadvantage of the
observer. A competitive scenario was chosen for this demon-
stration because it fully exercises the system in a relatively
simple scenario (see Sect. 6 for discussion).

The architecture for mental state manipulation presented
here makes heavy reuse of the motor actions and perceptual
processing that the robot uses for its own behavior. As such,
it can apply to varied contexts, as long as the robot is con-
figured to perceive and operate there. The scenario chosen
for this demonstration revolves around a simple competitive
game played between the human and the robot. The game is
illustrated in Fig. 1.

The rules of this game create a situation where the player
who goes second has the advantage of potentially seeing the
item played by their opponent. If the human goes second and
sees the item played by the robot, it is straightforward for
them to win by playing the object they saw the robot play.

For this demonstration, the robot takes its turn first. It
is thus to the robot’s advantage to manage the information
that can be observed from its behavior. If it proceeds in a
straightforward manner, the human will be able to watch and
observe the object the robot plays, then play the same object
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Fig. 2 Set of robot’s goals and resulting behavior for each of three
demonstration conditions

and win. To win, the robot must instead hide this information
from the human.

For the demonstration, the game was played three differ-
ent times, each time with a different set of mental state goals
for the robot (see Fig. 2). These different mental state goals
change the behavior of the robot as it plays the game. In each
case, the robot has the same overall task goal—transport the
cylinder to the goal location. However, the way it accom-
plishes this task varies in the three conditions based on the
mental state goals.

In condition one, the robot attempts to cause the human to
believe that the robot is transporting only the football, while
actually additionally transporting (and playing) the cylinder.
The robot finds that carrying the cylinder hidden behind its
back, with the football carried out in the open, satisfies these

conditions. In this way it may fool the human into thinking
that the robot is playing the football, causing the human to
lose by playing the football in response. In condition two, the
robot’s goal is to keep the cylinder (which it is transporting)
hidden from the human. The chosen action sequence results
in carrying the cylinder with its left hand, hidden behind its
back from the human. The human can’t see what the robot
played, so is likely to choose arbitrarily and win half the time
(there are two possible object choices). In the final case, the
robot has no mental state goals, and therefore its only goal is
to transport the cylinder. It simply carries the cylinder over
to the goal (likely causing the robot to lose in this case). The
robot’s performance of these three conditions is shown in
Fig. 3. Section 4 describes our system used to find the action
sequences which correctly manipulate the mental states.

4 Implementation

The implementation described here builds on the existing
R1D1 system, originally designed for interactive graphical
characters [1,4], then later adapted for robots [9,10]. The
system employs self-as-simulator techniques for theory of
mind tasks, and previous publications have described work in
mental state modeling, perspective taking, and goal inference
using this system (please refer to [2,3,8] for more details).

Fig. 3 Photos taken during the
robotic performance of the
demonstration scenario. The left
column shows a video still from
the perspective of the human
opponent during the three
conditions (Fig. 2). The right
column shows the same scene
from a different angle, revealing
what the robot is hiding from the
human. In all rows the robot
must transport the cylinder to
the goal. In row 1, the robot’s
mental state goals are to reveal
that it carries the football, and
hide that it carries the cylinder.
It accomplishes this by carrying
the football in the right hand,
and carrying the cylinder in the
left hand which it hides behind
its body. In row 2, the robot’s
mental state goal is to hide that
it carries the cylinder, but with
no goal about carrying a decoy
object. It does this by carrying
the cylinder in its left hand,
again hidden behind the body. In
row 3, the robot has no mental
state goals. In this case it simply
carries the cylinder in its left
hand openly
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These previous implementations and demonstrations
focused on modeling human mental states by monitoring
the human’s physical actions and visual perspective. The
robot then re-uses parts of its own behavioral mechanisms
in three main ways: (1) reusing its own world modeling
capabilities to connect the human’s visual perspective to
possible human mental state formation; (2) reusing its own
action performance mechanisms to connect the human’s
observed physical motions to possible higher level actions;
(3) reusing its own goal directed action system to infer
goals based on inferred mental states and actions. Inspired
by work in human psychology, the self-as-simulator archi-
tecture provides the advantage of a common vocabulary
between the robot’s own behavioral mechanisms and the
properties inferred in an observed human; since the pur-
pose of mental state inference is to inform the actions
of the robot, it is critical that inferred mental states be
mapped into the space of its behavior generation sys-
tems.

Using these systems, the robot is constantly modeling the
mental states of nearby agents. Whenever the robot discovers
a new agent, along with updating its own model of the world
state to reflect the presence of this agent, it also spawns a
new copy of its own modeling systems. This new copy will
maintain a world state model from the perspective of the new
agent. These copies are provided with sensory data that is re-
imagined by the robot from its own world state model, then
transformed and filtered to best match what that agent should
be experiencing.

Since these copies have the same capabilities as the robot’s
own systems, they too spawn copies when they sense another
agent (including the robot), allowing for recursive mental
state modeling. We currently cap this recursion at two levels,
to allow for second level mental state goals such as Robot
Demonstrates To Human That Robot Knows X.

In this previous work, the robot takes advantage of
its own embodiment by using its behavior generation
mechanisms as a common language between its behav-
ior and the human’s. Human actions and mental states
are understood through their relation to the robot’s own
actions and mental states. This common language allows
the robot to leverage its own structures for better infer-
ences (e.g., inferring a goal from a physical action). How-
ever, the robot was passive observer of mental states,
watching the human as an isolated actor and taking inde-
pendent action only once it had completed a particular
inference.

This implementation describes improvements made to the
above techniques allowing the robot to move out of the
role of an observer and instead become an active partici-
pant in theory of mind activities. Firstly, the robot’s pres-
ence in an interaction with a human cannot be ignored. The
robot must take into account the effect its own presence and

actions are having on the human’s mental states (includ-
ing recursive mental states, i.e., those that the human has
about the robot’s own mental states). Second, it is impor-
tant to move beyond the present. While monitoring the
mental states of a human “right now” is useful, it is also
critical to make short term predictions. Finally, the robot
needs to be able to take action to modify the future men-
tal states of the human. This can be thought of as a very
low level type of communication—deciding how the robot
should perform to cause the human to form a desired mental
state.

The goal of this implementation is to add mental state
manipulation capabilities to a physical robot. Robotic actions
cannot be modeled solely by a set of pre- and post-conditions:
they take time to perform, occur across physical space, and
are observed subject to the perspective of an observer. We
embrace these realities and include motion and geometry in
our computations for mental state manipulation. For exam-
ple, the robot may need to turn a certain way before perform-
ing an action in order for a critical part of a motion or effector
to be visible (or hidden) from an observer.

The implementation sections are somewhat abstract,
describing how we re-use elements without fully defining
the underlying systems. More details about the underlying
systems are available in the works referenced above, but to
give better context to the following sections:

Mental States used by the robots described here consist of
knowledge about the world around them; this takes the form
of a collection of known objects and the properties of those
objects. For example, the robot may have seen an orange foot-
ball at location (x,y,z). For animate objects, such as humans,
aside from basic properties the robot is also modeling their
mental states as described above. In addition to these exter-
nal objects, the robot also knows its own location and body
configuration.

Actions performed by the robot take the form of physical
motions with associated goals and expectations. Some may
be an open loop motion, such as “wave,” however many take
one or more parameters (in the form of known objects) and
may have dynamic elements. For example, “grab” operates
on an object with a known location, includes an expectation
(object ends up in hand), and has a dynamic controller instead
of a fixed motion sequence (closed loop feedback gets the
hand to the surround the target object).

Actions can be selected based on the current set of men-
tal states, as well as higher level goals (not discussed here).
For example, “grab” is only possible if a graspable object is
nearby.

The implementation is broken up into two main chal-
lenges: how can the robot simulate future actions along with
the mental state results of those actions, and, given this abil-
ity, how can it choose a course of action to bring about its
mental state goals.

123



320 Int J of Soc Robotics (2014) 6:315–327

Algorithm 1 Implementation Outline
Find Action Sequence:

Clear List of Failed Action Sequences
while Viable Sequences Remain do

Init Future Simulation From Current State
time = 0
Begin Simulation
while Simulation Running AND time < MAX_TIME do

time++
if Action In Progress then

Keep Performing Action
else

Select and Begin relevant Unexplored Action
if Mental State Goals Succeeded then

return Recent-Action-Sequence
else if Mental State Goals Failed then

Save Recent Action Sequence to Failed List
End Simulation

return Failed-To-Find-Sequence

4.1 Simulating the Future

In the previous section we described how we have used men-
tal state inference to model the current values of the human’s
hidden mental states to help resolve ambiguities and better
assist the human with their goals. In order to proactively
manipulate mental states, we use these mechanisms within
the context of a simulator which simulates the immediate
future, allowing the robot to evaluate and choose between
multiple actions based on mental state outcomes (see basic
outline in Algorithm 1).

The robot’s simulation of possible futures consists of a
copy of its own behavioral mechanisms, identical except that
it is disconnected from the real world inputs (sensors) and
outputs (motors). This “hypothetical” robot includes a copy
of the virtual model used for motor planning, so it still has
access to a body for performing its motor actions, however
the final stage of synchronizing that model to the motors of
the physical robot is not performed. This allows the robot to
maintain a detailed representation of the hypothetical actions
being performed, down to specific positioning of parts of its
own body.

By copying the mechanisms of the main robot’s systems to
make this “hypothetical” robot, the hypothetical robot inher-
its the same mental state modeling capabilities as the original.
However, using these capabilities to make future predictions
creates challenges not faced by the real-time robot. Though
the hypothetical robot can simulate motions with the vir-
tual body provided to it, it cannot rely on real-world physics
to close the sensory-motor loop and change the world state
as a result of its motions. Additionally, in order to predict
future mental states, rather than current, it must have a way
to advance its modeling to look ahead in time.

4.1.1 Mental States as Simple Physics

The real robot performs real actions, which alter the state
of the world, which changes the sensory input it receives

(A)

(B)

Fig. 4 Dataflow during reset and operation of hypothetical robot. a
shows the real robot on the left, and hypothetical robot on the right.
The red arrows represent object beliefs being copied during the reset
of the hypothetical robot at the beginning of a future simulation (the
hypothetical robot, including its models of human mental states, should
start from realtime robot’s current estimate). b shows the operation of
the hypothetical robot during a future simulation. Blue arrows show
how the data about objects propagates in this configuration (except for
the cutoff from the sensors, this is identical propagation as in the real
robot). (Color figure online)

from the world, which in turn results in updates to its mental
states (and the mental states of the agents it is modeling).
Our hypothetical robot cannot rely on this sensory-motor
loop, since it is not interacting with the physical world. To
overcome this absence, we reuse mechanisms designed for
robust world modeling in the face of sensory lapses and noise.

The first such mechanism is mental state maintenance. For
many reasons, such as occlusion, distance, or viewing angle,
the sensory stream of data about a particular object may be
interrupted. In these cases, as long as no conflicting data is
received, hidden objects are assumed to remain as they were
last seen. The real-time robot is constantly maintaining this
information about the world, and also updating the models it
is maintaining about nearby humans, which in turn maintain
this information in the same way. The hypothetical robot,
cut off from the sensors, will have no new data coming in;
however, if we perform a full copy of the models the realtime
robot has created, the hypothetical robot will start with an
accurate model, and the belief maintenance mechanisms will
retain the initial data over time. This copy must be performed
recursively, copying the mental states over for each of the
agents the robot is currently modeling the mental states for,
so they too start from the correct initial state (Fig. 4).
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Fig. 5 When the physical robot successfully carries an object, the
result is frame 3a, and the robot can model this result because its sen-
sors will detect the toy on the table. When the hypothetical robot carries
a virtual object, the physical sensor feed will not be affected. In both
the case of the physical and hypothetical robots, the belief maintenance
mechanisms assume that an object, while grasped, stays in the hand, and
thus they update the toy’s location during the carry action. This allows

both real and hypothetical robots to experience frame 2, even though the
hypothetical robot is not moving a real object, and the physical robot
is unlikely to be able to track the toy visually during this process. It is
important to cut off the physical sensor feed from reaching the hypo-
thetical robot so the object belief of the toy will stay put once released
(frame 3a) and not snap back to its real-world location (frame 3b)

The next mechanism is an expectation mechanism which
operates in conjunction with physical actions. Many physical
actions modify properties of objects in the world. For exam-
ple, when carrying an object, it is expected that the object
move along with the motion of the robot’s hand. The expec-
tation mechanism updates the robot’s model of the world
state to account for these expected property changes. During
an action like “carry”, it is difficult for the robot to actu-
ally see the object in its hand, but by using the expectation
mechanism the robot can continue to update its world model
until sensory data is re-acquired (conflicting data can over-
ride this expectation). This helps the real-time robot keep a
more accurate model of the world state in the face of incom-
plete sensory information by updating its models based on the
expected results of its actions (See Fig. 5). For the hypotheti-
cal robot, which has no access to actual sensory information,
this process serves the critical role of allowing it to update its
world model to reflect expected outcomes as actions are per-
formed. The hypothetical robot’s world model is what it will
use to re-imagine the visual input provided to the perceptual
systems of the humans it is modeling, therefore these changes
will also update the inferred mental states of the humans it is
simulating (if it judges the change to be within their visual
perspective).

The two mechanisms above allow the hypothetical robot
to maintain and update a simple world state model without
resorting to a heavy-weight physics simulation. Instead, the
representation is entirely within its own mental states, no
additional simulated sensors or physics modeling is required.
This does have the limitation that all simulated actions always
occur as expected (producing the expected results).

The proprioceptive sensing of the hypothetical robot’s
kinematics and locomotion can function almost as normal
as they are tied to the virtual model. This means that as it
performs actions, it motions and moves around the hypothet-
ical world appropriately, and those motions can be constantly
fed not only into its own world model, but can be used to
calculate accurate occlusions and sight-lines while updating

Fig. 6 A hypothetical copy of the robot is used for mental state pre-
dictions. The robot has the capability to model mental states of agents
around it (left). To make short term predictions, a copy of the robot
(green, right) starts from the robot’s current state and performs (in a
virtual space) the actions the robot is about to perform, but performs
them much faster. While doing this, it maintains the mental states of the
surrounding agents as they participate in this accelerated timeline. This
gives the robot the ability to predict the mental states of surrounding
agents in the short term future. (Color figure online)

the mental models of the humans. Thus the modeling of the
human’s mental states can take into account a detailed, 3D
representation of future situations and how that layout will
affect their perception of the events as they unfold.

4.1.2 Time

As described above, the hypothetical robot is as close as
possible to a direct copy of the mechanisms that run the actual
robot. The hypothetical robot, however, is not limited by the
constraints placed on the physical robot and its motors; we
can thus send it forward in time by running it much faster
than the physical robot (in simulation, Fig. 6).

To allow this, the hypothetical robot’s progress through
motor actions is increased: joints move faster to complete
motor actions more quickly. In addition, instead of updating
the robot’s behavior, motor, and perceptual systems at the
constant rate of 30 hz, as in the real robot, the hypothetical
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robot is allowed to update as fast as the CPU allows with
a virtual clock keeping pace such that 1/30th of a second
appears to have elapsed between each update.

This allows the robot to send a probe into the near term
future, by copying its current state into the hypothetical robot,
having the robot quickly perform the next actions planned, in
simulation, and then examining the predicted mental states
produced in that simulation after an action or series of actions.

4.2 Finding Correct Action Sequence

In the last sections we described how to use the self as simu-
lator system to model another agent’s mental state as well as
to simulate hypothetical futures. In this section we use these
two capabilities together to search for an action sequence that
achieves our particular mental state modification goals. This
section details the critical ingredients for this search. First,
mental state goals must be well defined—it is not sufficient to
pair a mental state with an agent, the path through the recur-
sive modeling tree is important to the meaning of the goal.
Second, taking this goal into account, the robot must search
through its space of possible action and parameter sequences,
determining action relevance as it proceeds.

4.2.1 Mental State Goals

Mental state models exist in a recursive hierarchy, with each
agent modeling the agents around them, and those models in
turn modeling the agents known to that model. This process
allows us to specify complicated mental state goals (Fig. 7).
We traverse this structure using Agent Specifiers, which are
a mechanism to specify a particular model, or models, in
the recursive model graph. For example, we might want all
humans to think that the robot knows X. This specifier would
then create several paths through the graph to pinpoint the
appropriate models, and when paired with a particular mental

(B)

(A)

Fig. 7 A two level deep example of the recursive structure of the mental
models maintained by the robot. The robot is maintaining a model of
the mental states of two humans, and each of those mental models, in
turn, is maintaining a model of the other agents. Mental state goals,
then, must not just indicate a desired mental state and an agent which
should have that state, but also a path to that agent. It is different to try
to get Human1 to believe X (model (A)) than to get Human2 to believe
that Human1 believes X (model (B))

state goal (X), together they specify the overall desired goal
state.

In Fig. 8, arrows show the robot tracking these goals during
a simulation. Arrows visually show the path through the agent
models in the mental state graph to a particular model’s belief,
in this case going from human to robot to object for the goal
“human knows that robot knows it is carrying X” (first arrow,
originating at the root node “Robot” is always omitted).

4.2.2 Action Sequences

Having specified mental state goals, and a hypothetical robot
which looks forward while tracking mental state effects
caused by its actions, we can now search through the action
space for sequences that achieve the desired result. Actions
are often parameterized, and each action has a mechanism to
determine current valid parameters, as well as whether the
action can even be performed in the current situation. For
example, a Grab action will be able to produce a list of target
objects, which are nearby objects that can be grabbed; it can
also report that the action is inappropriate, in this case if the
robot’s hands are full, or no objects are in range.

Because the set of appropriate actions and parameters
change as the robot acts and alters the world, it does not
build an exhaustive tree initially. Instead, the tree is filled out
as it searches (Fig. 9). Through this process, the robot can
find the path though its parameter and action space that most
achieves its mental state goals. Once a successful sequence
is found, the search is terminated. The parameters associated
with the sequence (e.g., which object to grab) are composed
of mental states held by the hypothetical robot, so to be per-
formed by the real robot they must be mapped back to the
mental states of the real robot, which may be different (object
properties may change during the simulation, for example).
We have found that simple heuristics suffice for these map-
pings, such as relying on similarity of key object properties
like location and identifying information.

5 Study

In order to evaluate reactions of people toward a robot team-
mate with this mental state manipulation ability, a video
based human-subjects study was performed. Along with test-
ing if the robot’s manipulative actions provided any advan-
tage to the robot in the game, the study measured if these
behaviors had any effect on the subjects’ perception of the
robot’s competencies and their evaluation of the robot as a
potential partner.

Subjects participated in the study online, by accessing a
website. The subjects were broken into three different groups.
All subjects were instructed that they would be playing a
simulated game with the robot. After the game and rules were

123



Int J of Soc Robotics (2014) 6:315–327 323

(A) (B)

Fig. 8 This augmented reality visualizer demonstrates the robot’s
planning system. The hypothetical robot (green) simulates action
sequences based on the current goals and the most recent sensory data.
a Human player’s perspective of a failed trial: the hypothetical robot
has just revealed that it is carrying the cylinder, failing a mental state

goal (visualized by the red arrow). b Opposite perspective of another
action sequence: the robot has achieved a mental state goal (show human
that it is carrying the football, green arrow) and not yet failed its goal
of keeping the cylinder hidden (no red arrow)—a possible successful
action sequence in progress. (Color figure online)

(A)

(B)

Fig. 9 a diagrams the process of simulating a single possible future
(Sect. 4.1). b shows of search through action/parameter space, with
lazy discovery of possible subsequent actions (to account for each action
altering the world state, and thus changing which actions and parameters
are available). Robot maintains mental state models as it searches so as
to monitor mental state goals

described, they were shown a video of the robot performing
its turn. This video was recorded from the perspective of the
human player, with the robot programmed to treat the camera
as if it were the opposing player (thus any actions which
would hide an object from the competing human would hide
that object from the camera).

Each of the three groups corresponded to one of the con-
ditions in Fig. 2 and saw videos of the robot motivated by
the goal in that condition. After watching this video, the sub-
jects were instructed to fill out their answers to several ques-
tions. The first question asked them to indicate which item
they would place in their goal area in response to the robot’s
actions. Next they were asked if, in future games, they would

prefer to team with the robot or play against the robot. Finally
a set of questions asked them to rank the robot on several
criteria.

In the conditions with attempted concealment (conditions
one and two), after filling out the information above the sub-
jects were shown the same interaction from a second video
angle allowing them to see any originally occluded objects.
After seeing this second video, the subjects are then asked the
same questions again to evaluate how their answers change
in response to this new information.

5.1 Study Results and Discussion

The answers provided by the subjects were analyzed to
address the following hypotheses:

– Hypothesis 1 The mental state manipulation is success-
ful, as measured by the subjects’ choice of object. If the
robot is successful, people will be fooled by the robot’s
decoy object in condition one, they will be unsure what
to play in condition two, and they will correctly see the
robot’s actions in condition three and thus be able to win.
After seeing the second video, revealing the robot’s hid-
den hand, people will choose the object the robot was
hiding.

– Hypothesis 2 Subjects will choose the robot as a team-
mate more frequently when they observe its mental state
manipulation capabilities. People will be more willing
to team with the robot that hides objects behind its back
than the robot that openly carries objects, and will change
their mind about teaming with the condition one robot
once they realize it had been manipulating mental states.

– Hypothesis 3 People are more willing to attribute men-
tal states to the robot once they see that it is pursuing a
strategy of mental state manipulation, rather than sim-
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Fig. 10 Data showing object
choice by human players across
each condition, before and after
having seen the second video.
The participant is instructed to
choose the winning object,
which is defined to be the same
object the robot placed in its
goal. Subject choice differs
significantly by condition
(across first row) (p < 0.01) and
changes significantly after
seeing second video (columns)
(p < 0.01)
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ply transporting an object to the goal. This hypothesis
is evaluated by the subjects’ change in rating of several
statements after the robot’s deception is revealed.

Across the three conditions, 113 subjects completed the
entire questionnaire. 41 subjects were in the condition one
group, 37 in condition two, and 35 in condition three.

5.1.1 Hypothesis 1: Success of Mental State Manipulation

Participants’ choices of object to play indicated that the
robot successfully occluded its chosen object as described
in hypothesis one (Fig. 10). In condition two (no object vis-
ible) the participants showed no strong preference for either
object; in the other conditions the participants chose the same
object as the robot was openly carrying: the football in con-
dition one (the deception is successful, and the human loses)
and the cylinder in condition three (the human is correct, and
wins).

In condition one and two, many subjects change their
choice of object after seeing the second video (revealing both
of the robot’s hands). In condition two this change happens
as expected; after the first video the subjects have little pref-
erence, but then after seeing the second video they switch
their answer to the newly revealed cylinder.

In condition one, when the deception is revealed many
participants switch from their initial choice of football to the
now revealed cylinder. While technically the robot could play
either item (it has both in its hands), cylinder is chosen most
frequently as expected by the hypothesis. This choice is con-
sistent with applying a deceptive motive to the robot: it was
hiding the cylinder on purpose, and therefore means to play
it. In written responses, 11 of the 18 who chose the cylinder
(the choice predicted by hypothesis one) used language that
had some relation to mental state manipulation—that they
chose the cylinder because the robot was “hiding” it from
the subject.

Despite cylinder being the most frequent choice, many
participants were still undecided or chose the football. An
informal analysis of the written comments sheds some light
on the wider distribution of choices in condition 1 part 2 as
compared to condition 2 part 2. Six of the no-preference
respondents give a mechanistic description of the robot’s
behavior, without mentioning any motive (without attribut-
ing a motive for hiding the object, it is not clear which of
the two objects the robot would play). Three of them reacted
in the opposite direction—having seen that the robot tricked
them, they attribute such high levels of deceptive capability
that they were unsure which object to now choose, imag-
ining further trickery. The remaining six indicate a level of
confusion with the task, or seem to have missed some parts
of the video (e.g., some did not seem to see the cylinder in
the robot’s previously hidden hand when shown the second
video).

5.1.2 Hypothesis 2: Willingness of Subjects to Team with
Robot

After each video, subjects were asked whether in future
games they would prefer to have the robot on their team
or on the opposing team (Fig. 11).

Hypothesis two predicts that subjects will be more willing
to team with a robot that is able to perform mental state
manipulations. From the analysis of hypothesis one, we know
that subjects largely were fooled by the robot’s deception in
condition one, choosing the football. Consistent with this
expectation, after watching only the first video, subjects in
conditions one and three were less likely to want to team
with the robot as compared with condition two, where they
witness the robot hiding an object. Additionally, the subjects
are more willing to team with the robot in condition one
after the second video reveals the robot’s manipulation. These
differences indicate that when people are aware of mental
state manipulation capabilities, they are more willing to team
with the robot.
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Fig. 11 Human is asked
whether, if they were to play
another game, they would
choose to have the robot on their
team or the other team. After the
first video, participants want to
team with the robot significantly
more in condition two than in
one or three (p < 0.01). In
condition one subjects change
their answer in favor of teaming
with the robot after the second
video (p < 0.001)
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Fig. 12 Data showing subjects’ rating of the robot on four questions
(using a five point scale) in condition one. Subjects in condition one
were asked these questions once after watching the first video of the
robot’s turn. They are asked to rate the robot again after the robot’s

hidden behavior is revealed through the second video. For each ques-
tion, the responses change significantly after watching the second video
(p < 0.01)

In condition two, it is expected that the subjects were
largely aware of the robot’s strategy of occluding the item.
The second video reveals the item, allowing the participant
to refine their item choice, but we don’t expect their desire
to team with the robot to change, as no new capabilities
are revealed. The teaming question responses are consistent
with this interpretation—there is very little change in their
response to the teaming question after watching the second
video.

5.1.3 Hypothesis 3: Attribution of Mental States to Robot

In addition to the above questions, subjects were asked to rate
their agreement with four statements about the robot’s per-
formance and internal mental functions on a five point scale.
By asking these questions before and after the deception is
revealed in condition one, we can examine how that revela-
tion changes the participants’ evaluation of the robot and to
what extent it affects their attribution of mental states. Fig-
ure 12 shows how the subjects’ opinions changed in support
of hypothesis three. Subjects with lowered expectations have

been shown to be more affected by the positive performances
of a robot in some cases, which may amplify this effect [15].

5.1.4 Results Summary

Through the subjects’ object choices in the three conditions,
the study showed that the mental state manipulation per-
formed by the robot was successful. The mental state manipu-
lation goals the robot pursued did indeed change the behavior
of the subjects.

The study also showed that these behaviors were readable
to the subjects. After watching the manipulation behavior
from a second angle, subjects were able to better predict
the robot’s actions based on a correct understanding of its
deceptive motivation for hiding its actions.

Finally, these capabilities had a positive effect on subjects’
willingness to work with the robot, and raised their rating of
the robot’s capabilities. Subjects’ discovery of the mental
state manipulation changed both their mechanistic descrip-
tion of the robot’s behavior, as well as their description of its
behavior in terms of intentions.
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This multi-perspective video strategy allowed us to effi-
ciently collect data from many participants, while preserving
certain important aspects of the game experience. Other or
stronger effects might be observed when subjects can physi-
cally interact with the robot, however we were able to obtain
significant results on the effect of mental state manipulation
capabilities on teaming preference and mental state attribut-
ion using this method.

6 Discussion and Future Work

The focus of this work has been to leverage how embod-
iment connects the observable and alterable world with the
hidden mental states of other agents which cannot be directly
observed or operated on. Humans and robots, while vastly
different, share a common problem of being embodied agents
with sensory motor loops based on affecting and observing
the physical world around them. By modeling a human’s con-
nection between mental states and the world as similar to its
own, and reusing those mechanisms to help evaluate mental
state consequences, the robot can add altering mental states
in others to its repertoire of possible goals.

This gives the robot a primitive type of communication
that operates without language, using only the robot’s own
actions and perceptions as its vocabulary.

The demonstration shown here focuses on a competitive
scenario, and the mental state manipulation performed could
be classified as “deceptive.” It is not the specific intention of
the authors to create deceptive robots; rather, it is to explore
the base level skill of taking action to modify mental states.
It is interesting to note that this same skill could be described
as part of “communication” or “maintenance of common
ground” when goals are aligned, but becomes part of “decep-
tion” when they are not. In the scenario presented, the robot’s
goal is to modify the human’s mental states to differ from the
actual world; this scenario was chosen because it allows a
simple demonstration to exercise the full capabilities of the
system.

An equivalently interesting demonstration of the system
in a cooperative scenario could be to have the robot modify
a human’s incorrect mental state back to ground truth, for
example in a task where a human is overloaded and forms
incorrect mental states as a result. In order to show off the
robustness of the belief manipulation, this task should be cho-
sen such that basic heuristics (“speak information near part-
ner”, “point to object partner hasn’t seen”) would be insuffi-
cient. While this could be done (e.g. by causing interference,
distractions, etc.), it was deemed more difficult to set up a
suitably complex task repeatably in the laboratory.

One limitation to this self as simulator approach is that
the robot cannot model mental states that are not part of its
own mental repertoire. While this limits the possible space

of observations and manipulations, this limitation also means
that all observations that the robot can make are in the vocab-
ulary of its own mental states, readily applicable to its own
behavior; observing or inferring mental states outside this
vocabulary would not be directly useful by the robot’s sys-
tems, as they would not have any meaning to the robot: mean-
ing is derived by the role of that mental state in the robot’s
own behavioral mechanisms.

Due to the detailed nature of the mental state modeling
and simulations of the future, it would be computationally
expensive to create long term plans with these mechanisms.
However, a long term plan at this level of detail is not neces-
sarily productive—likely it is not worth considering the exact
hand motion I’ll need for a very specific situation occur-
ring tomorrow. Instead, this level of detail is useful in the
very short term, for determining how to perform the next
actions appropriately. Interesting future work is to integrate
these techniques with a longer term, more abstract mecha-
nism, allowing longer plans with mixed levels of detail. It
could also be helpful to include a set of heuristics that define
several simple communication strategies and the context to
which they apply, to allow for simple communication in sim-
ple situations (“speak information near partner”). When one
of these fails or is not applicable, then the computationally
intensive modeling/planning described here could be used to
determine a course of action.

The major contributions of this paper are: an implemen-
tation which proactively manipulates human mental states at
the level of perception and physical action and an evaluation
of how this ability is perceived by humans.
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