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Abstract. We present our implementation of a self-as-simulator archi-
tecture for mental state manipulation through physical action. The robot
attempts to model how a human’s mental states are updated through
their visual perception of the world around them. This modeling, com-
bined with geometrically detailed, perspective correct simulations of the
immediate future, allows the robot to choose actions which influence the
human’s mental states through their visual perception. The system is
demonstrated in a competitive game scenario, where the robot attempts
to manipulate the mental states of an individual in order to win. We
evaluate people’s reaction to the system, focusing on the participants’
perception of a robot with mental state manipulation capabilities.

1 Introduction

This paper focuses on a demonstration of mental state manipulation in a com-
petitive game scenario and an evaluation of human reactions to this behavior.
The motivation for this work is to explore the connection between (hidden) men-
tal states of an embodied agent and the (observable and modifiable) world in
which they exist.

An embodied agent exists in the physical world, and though its mental states
are hidden, there are rich connections between the agent’s mental states and
the world in which it is operating. Observing an agent’s visual perspective and
physical actions can help inform a model of the underlying mental states caused
by those perceptions and causing those actions.

In order to modify the mental states of another agent, it is necessary to
manipulate the world such that the agent’s observations will update its internal
mental states to the desired configuration. Usage of this critical skill encompasses
a very broad set of interactions - in a cooperative scenario we might call it
communication. In such a scenario we often collapse this concept into “tell” or
“show.” However the underlying goal remains: to change a mental state through
physical action on the world that will cause the agent’s perceptual system to
update their mental states in the desired manner. This can be demonstrated by
observing how we respond to failures of the exchange - e.g., by moving an object
into the line of sight of an observer who is not paying attention.
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Fig. 1. Systems such as BDI architectures (B) include ad-
vanced mental state manipulation but tend to operate in
simulation with highly abstracted actions and perceptual
models. Other systems (A) employ geometrically correct
perceptual models to infer mental states, however lack the
ability to proactively manipulate these states. The research
here (C) pushes into a new part of the space using detailed,
geometrically correct mental state modeling to form short
term plans for physical actions designed to manipulate the
mental state of humans.

In a competitive sce-
nario we call this same
ability deception. In
this case the world
is intentionally modi-
fied (again taking into
account the perceptual
capabilities of the tar-
get agent) in such a
way that the observing
agent will form incor-
rect mental states.

We believe that for
a robot to robustly in-
teract with people, it is
important for the robot
to form goals in this
space of mental state
outcomes rather than
simply perform com-
municative actions as a
series of physical or auditory actions; this ability will allow the robot to succeed
in situations where unexpected obstacles prevent naive communication strategies
from succeeding.

Researchers have approached the modeling of mental states in many ways.
The research here focuses on short timescale (0 to 60 seconds), highly detailed
modeling of how the robot’s actions will affect the human’s mental states through
the means of their perception. We attempt to embrace the physical performance
of action and examine the accompanying communication value, rather than try-
ing to abstract away action-performance. The robot’s goal is to plan a sequence
of actions to cause the human to believe what the robot wants them to believe
while also accomplishing its task objectives; depending on the scenario, this takes
the form of robust, (sometimes implicit) communication, or deception. This is
especially useful in contexts where information has value and can be revealed
by behavior. For example, in search & rescue, common ground can be implicitly
maintained by making sure others observe important actions (“room-searched”).
Another example is competitive foraging, where agents seek to acquire resources
without revealing their location. Section 5 describes related work in detail, how-
ever Figure 1 illustrates the area we are exploring with this work.

We present an implementation and a study of human reactions to a system
which allows a robot to take action in order to alter the mental states of a hu-
man according to the robot’s goals. The robot employs perspective taking as well
as self-as-simulator techniques to model the mental states of nearby humans. The
robot has a simple planner, however the goal space of the planner includes not
only the desired world-state, but also the mental states of the human. This allows
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the robot to form and execute plans that include changes to the human’s mental
states. After describing a motivating demonstration scenario, we provide imple-
mentation details. The demonstration scenario is then used as part of a user study
to evaluate how people perceive a robot that has these capabilities.

2 Demonstration Scenario

Robot

Human

Robot's
Objects

Human's
Objects

Robot's
Goal

Human's
Goal

Dividers

Fig. 2. Top down view of the demonstration scenario,
a competitive game between the human and the robot.
The robot stays on the upper part of the diagram pic-
tured, and the human on the lower part. Each player
has access to a matching set of objects on the left side,
and each has their own goal area on the right side. The
game ends when each player has placed an object into
their goal - the robot wins if the two players placed dif-
ferent objects, the human wins if the objects are the
same. Occlusions block the view of each player from
the opposing player’s object and goal areas, however
they can see each other as they travel between the
object repository and goal.

The architecture for men-
tal state manipulation pre-
sented here makes heavy
reuse of the motor actions
and perceptual processing
that the robot uses for its
own behavior. As such, it
can apply to varied con-
texts, as long as the robot
is configured to perceive
and operate there. The sce-
nario chosen for this demon-
stration revolves around a
simple competitive game
played between the human
and the robot. The game is
illustrated in Figure 2.

The rules of this game
create a situation where
the player who goes sec-
ond has the advantage of
potentially seeing the item
played by their opponent. If
the human goes second and
sees the item played by the

robot, it is straightforward for them to win by playing the object they saw the
robot play.

For this demonstration, the robot takes its turn first. It is thus to the robot’s
advantage to manage the information that can be observed from its behavior. If
it proceeds in a straightforward manner, the human will be able to watch and
observe the object the robot plays, then play the same object and win. To win,
the robot must instead hide this information from the human.

For the demonstration, the game was played three different times, each time
with a different set of mental state goals for the robot (see Figure 3). These
different mental state goals change the behavior of the robot as it plays the
game. In each case, the robot has the same overall task goal - transport the
cylinder to the goal location. However, the way it accomplishes this task varies
in the three conditions based on the mental state goals.
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Condition Robot’s Goals Robot’s Behavior

1
•Cylinder in goal
•Human doesn’t see me carry cylinder
•Human sees me carry football

•Transports cylinder behind back
•Carries decoy football

2 •Cylinder in goal
•Human doesn’t see me carry cylinder •Transports cylinder behind back

3 •Cylinder in goal •Transports cylinder openly

Fig. 3. Set of robot’s goals and resulting behavior for each
of three demonstration conditions

In condition one, the
robot attempts to cause
the human to believe
that the robot is trans-
porting only the foot-
ball, while actually
additionally transport-
ing (and playing) the
cylinder. The robot
finds that carrying the
cylinder hidden behind
its back, with the foot-

ball carried out in the open, satisfies these conditions. In this way it may fool
the human into thinking that the robot is playing the football, causing the hu-
man to lose by playing the football in response. In condition two, the robot’s
goal is to keep the cylinder (which it is transporting) hidden from the human.
The chosen action sequence results in carrying the cylinder with its left hand,
hidden behind its back from the human. The human can’t see what the robot
played, so is likely to choose arbitrarily and win half the time (there are two
objects). In the final case, the robot has no mental state goals, and therefore its
only goal is to transport the cylinder. It simply carries the cylinder over to the
goal (likely causing the robot to lose in this case). The robot’s performance of
these three conditions is shown in Figure 4. Section 3 describes our system used
to find the action sequences which correctly manipulate the mental states.

3 Implementation

Fig. 4. Photos taken during the robotic performance of the
demonstration scenario. Left: Robot hiding object from hu-
man player. Center: Player’s view, robot openly transport-
ing cylinder. Right: Player’s view, robot hiding cylinder
and openly transporting football.

The implementation de-
scribed here builds on
the existing R1D1 sys-
tem, originally designed
for interactive graph-
ical characters [1,3], then
later adapted for robots
[4,5]. The system em-
ploys self-as-simulator
techniques for theory of
mind tasks, and pre-
vious publications have
described work in men-
tal state modeling, per-
spective taking, and goal inference using this system (please refer to [2] for more
details).

These previous implementations and demonstrations focused on modeling hu-
man mental states by monitoring the human’s physical actions and visual per-
spective. The robot then re-uses parts of its own behavioral mechanisms in three
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main ways: 1) reusing its own world modeling capabilities to connect the human’s
visual perspective to possible human mental state formation; 2) reusing its own
action performance mechanisms to connect the human’s observed physical mo-
tions to possible higher level actions; 3) reusing its own goal directed action
system to infer goals based on inferred mental states and actions. Inspired by
work in human psychology, the self-as-simulator architecture provides the advan-
tage of a common vocabulary between the robot’s own behavioral mechanisms
and the properties inferred in an observed human; since the purpose of mental
state inference is to inform the actions of the robot, it is critical that inferred
mental states be mapped into the space of its behavior generation systems.

Using these systems, the robot is constantly modeling the mental states of
nearby agents.Whenever the robot discovers a new agent, along with updating its
own model of the world state to reflect the presence of this agent, it also spawns a
new copy of its own modeling systems. This new copy will maintain a world state
model from the perspective of the new agent. These copies are provided with sen-
sory data that is re-imagined by the robot from its own world state model, then
transformed and filtered to best match what that agent should be experiencing.

Algorithm 1. Implementation Outline
Find Action Sequence:

Clear List of Failed Action Sequences
while Viable Sequences Remain do

Init Future Simulation From Current State
time = 0
Begin Simulation
while Simulation Running AND time < MAX TIME
do

time++
if Action In Progress then

Keep Performing Action
else

Select and Begin relevant Unexplored Action
if Mental State Goals Succeeded then

return Recent-Action-Sequence
else if Mental State Goals Failed then

Save Recent Action Sequence to Failed List
End Simulation

return Failed-To-Find-Sequence

Since these copies have
the same capabilities as the
robot’s own systems, they
too spawn copies when they
sense another agent (in-
cluding the robot), allowing
for recursive mental state
modeling. We currently cap
this recursion at two lev-
els, to allow for second level
mental state goals such as
Robot Demonstrates To Hu-
man That Robot Knows X.

3.1 Simulating the
Future

In the previous section we
described how we have used
mental state inference to
model the current values of the human’s hidden mental states to help resolve
ambiguities and better assist the human with their goals. In order to proac-
tively manipulate mental states, we use these mechanisms within the context of
a simulator which simulates the immediate future, allowing the robot to evaluate
and choose between multiple actions based on mental state outcomes (see basic
outline in Algorithm 1).

The robot’s simulation of possible futures consists of a copy of its own be-
havioral mechanisms, identical except that it is disconnected from the real world
inputs (sensors) and outputs (motors). This “hypothetical” robot includes a copy
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of the virtual model used for motor planning, so it still has access to a body for
performing its motor actions, however the final stage of synchronizing that model
to the motors of the physical robot is not performed. This allows the robot to
maintain a detailed representation of the hypothetical actions being performed,
down to specific positioning of parts of its own body.

Mental States. The real robot performs real actions, which alter the state of
the world, which changes the sensory input it receives from the world, which in
turn results in updates to its mental states (and the mental states of the agents
it is modeling). Our hypothetical robot cannot rely on this sensory-motor loop,
since it is not interacting with the physical world. To overcome this absence,
we reuse mechanisms designed for robust world modeling in the face of sensory
lapses and noise.

With the normal stream of sensory data interrupted, the robot retains the
most recently known properties for objects around it. An expectation mech-
anism operates in conjunction with physical actions - actions that alter the
world are expected to succeed, so the robot updates object properties as ap-
propriate as the action progresses. For example, when carrying an object, the

Time

progress 
per update

Fig. 5. A hypothetical copy of the robot is used for
mental state predictions. The robot has the capabil-
ity to model mental states of agents around it (left).
To make short term predictions, a copy of the robot
(green, right) starts from the robot’s current state and
performs (in a virtual space) the actions the robot
is about to perform, but performs them much faster.
While doing this, it maintains the mental states of
the surrounding agents as they participate in this ac-
celerated timeline. This gives the robot the ability to
predict the mental states of surrounding agents in the
short term future.

robot assumes the object
is being moved along with
the robot’s hand, and up-
dates its position accord-
ingly even if it cannot verify
the object is in its hand at
all times (as long as no con-
tradictory sensory informa-
tion overrides this default
data). For our hypothetical
robot no sensory data can
override this belief main-
tenance mechanism, so the
objects will be updated as
if the actions are performed
successfully.

The proprioceptive sens-
ing of the hypothetical
robot’s kinematics and lo-
comotion can function al-
most as normal as they are
tied to the virtual model.
This means that as it per-
forms actions, it motions
and moves around the hy-

pothetical world appropriately, and those motions can be constantly fed not
only into its own world model, but can be used to calculate accurate occlusions
and sight-lines while updating the mental models of the humans.
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Time. As described above, the hypothetical robot is as close as possible to a
direct copy of the mechanisms that run the actual robot. The hypothetical robot,
however, is not limited by the constraints placed on the physical robot and its
motors; we can thus send it forward in time by running it much faster than the
physical robot (in simulation, Figure 5).

To allow this, the hypothetical robot’s progress through motor actions is in-
creased: joints move faster to complete motor actions more quickly. In addi-
tion, instead of updating the robot’s behavior, motor, and perceptual systems
at the constant rate of 30 hz, as in the real robot, the hypothetical robot is
allowed to update as fast as the CPU allows with a virtual clock keeping pace
such that 1/30th of a second appears to have elapsed between each update.

A) B)

Fig. 6. This augmented reality visualizer demonstrates the
robot’s planning system. The hypothetical robot (green)
simulates action sequences based on the current goals and
the most recent sensory data. A) Human player’s perspec-
tive of a failed trial: the hypothetical robot has just re-
vealed that it’s carrying the cylinder, failing a mental state
goal (visualized by the red arrow). B) Opposite perspec-
tive of another action sequence: the robot has achieved a
mental state goal (show human that it’s carrying the foot-
ball, green arrow) and not yet failed its goal of keeping
the cylinder hidden (no red arrow) - a possible successful
action sequence in progress.

3.2 Finding
Correct Action
Sequence

In the last two sec-
tions we described how
to use the self as sim-
ulator system to model
another agent’s mental
state as well as to sim-
ulate hypothetical fu-
tures. In this section
we use these two ca-
pabilities together to
search for an action
sequence that achieves
our particular mental
state modification goals.

Mental State Goals. Mental state models exist in a recursive hierarchy, with
each agent modeling the agents around them, and those models in turn modeling
the agents known to that model. This process allows us to specify complicated
mental state goals (Figure 7). We traverse this structure using Agent Specifiers,
which are a mechanism to specify a particular model, or models, in the recursive
model graph. For example, we might want all humans to think that the robot
knows X. This specifier would then create several paths through the graph to
pinpoint the appropriate models, and when paired with a particular mental state
goal (X ), together they specify the overall desired goal state.

In Figure 6, arrows show the robot tracking these goals during a simulation.
Arrows visually show the path through the agent models in the mental state
graph to a particular model’s belief, in this case going from human to robot
to object for the goal “human knows that robot knows it is carrying X ” (first
arrow, originating at the root node “Robot” is always omitted).
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Robot

Human1Human2

RobotHuman2Human1Robot

(imagines)

A)

B)

Fig. 7. A two level deep example of the recur-
sive structure of the mental models maintained by
the robot. The robot is maintaining a model of the
mental states of two humans, and each of those
mental models, in turn, is maintaining a model of
the other agents. Mental state goals, then, must
not just indicate a desired mental state and an
agent which should have that state, but also a path
to that agent. It is different to try to get Human1
to believe X (model (A)) than to get Human2 to
believe that Human1 believes X (model (B)).

Action Sequences. Having
specified mental state goals,
and a hypothetical robot which
looks forward while tracking
mental state effects caused by
its actions, we can now search
through the action space for se-
quences that achieve the de-
sired result. Actions are often
parameterized, and each ac-
tion has a mechanism to deter-
mine current valid parameters,
as well as whether the action
can even be performed in the
current situation. For example,
a Grab action will be able to
produce a list of target objects,
which are nearby objects that
can be grabbed; it can also re-

port that the action is inappropriate, in this case if the robot’s hands are full,
or no objects are in range.

Because the set of appropriate actions and parameters change as the robot
acts and alters the world, it does not build an exhaustive tree initially. Instead,
the tree is filled out as it searches (Figure 8). Through this process, the robot
can find the path though its parameter and action space that most achieves

?

?

?

?

Performed 
So Far

Not Yet 
Performed

Time (Virtual World)

Look 
Ahead 

Window

Fig. 8. Diagram of search through ac-
tion/parameter space, with lazy discovery of
possible subsequent actions (to account for
each action altering the world state, and
thus changing which actions and parameters
are available). Robot maintains mental state
models as it searches so as to monitor mental
state goals.

its mental state goals. Once a suc-
cessful sequence is found, the search
is terminated. The parameters asso-
ciated with the sequence (e.g., which
object to grab) are composed of
mental states held by the hypothet-
ical robot, so to be performed by
the real robot they must be mapped
back to the mental states of the
real robot, which may be different
(object properties may change dur-
ing the simulation, for example). We
have found that simple heuristics
suffice for these mappings, such as
relying on similarity of key object
properties like location and identi-
fying information.
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4 Study

In order to evaluate reactions of people toward a robot teammate with this
mental state manipulation ability, a video based human subjects study was per-
formed. Along with testing if the robot’s manipulative actions provided any
advantage to the robot in the game, the study measured if these behaviors had
any effect on the subjects’ perception of the robot’s competencies and their
evaluation of the robot as a potential partner.

Subjects participated in the study online, by accessing a website. The subjects
were broken into three different groups. All subjects were instructed that they
would be playing a simulated game with the robot. After the game and rules
were described, they were shown a video of the robot performing its turn. This
video was recorded from the perspective of the human player, with the robot
programmed to treat the camera as if it were the opposing player (thus any
actions which would hide an object from the competing human would hide that
object from the camera).

Each of the three groups corresponded to one of the conditions in Figure
3 and saw videos of the robot motivated by the goal in that condition. After
watching this video, the subjects were instructed to fill out their answers to
several questions. The first question asked them to indicate which item they
would place in their goal area in response to the robot’s actions. Next they were
asked if, in future games, they would prefer to team with the robot or play
against the robot. Finally a set of questions asked them to rank the robot on
several criteria.

In the conditions with attempted concealment (conditions one and two), after
filling out the information above the subjects were shown the same interaction
from a second video angle allowing them to see any originally occluded objects.
After seeing this second video, the subjects are then asked the same questions
again to evaluate how their answers change in response to this new information.

4.1 Study Results and Discussion

The answers provided by the subjects were analyzed to address the following
hypotheses:

– Hypothesis 1: The mental state manipulation is successful, as measured by the
subjects’ choice of object. If the robot is successful, people will be fooled by the
robot’s decoy object in condition one, they will be unsure what to play in condition
two, and they will correctly see the robot’s actions in condition three and thus be
able to win. After seeing the second video, revealing the robot’s hidden hand,
people will choose the object the robot was hiding.

– Hypothesis 2: Subjects will choose the robot as a teammate more frequently
when they observe its mental state manipulation capabilities. People will be more
willing to team with the robot that hides objects behind its back than the robot
that openly carries objects, and will change their mind about teaming with the
condition one robot once they realize it had been manipulating mental states.
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– Hypothesis 3: People are more willing to attribute mental states to the robot
once they see that it is pursuing a strategy of mental state manipulation, rather
than simply transporting an object to the goal. This hypothesis is evaluated by
the subjects’ change in rating of several statements after the robot’s deception is
revealed.

Across the three conditions, 113 subjects completed the entire questionnaire. 41
subjects were in the condition one group, 37 in condition two, and 35 in condition
three.
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Fig. 9. Data showing object choice by human players
across each condition, before and after having seen the
second video. The participant is instructed to choose the
winning object, which is defined to be the same object the
robot placed in its goal. Subject choice differs significantly
by condition (across first row) (p < .01) and changes sig-
nificantly after seeing second video (columns) (p < .01).

Hypothesis 1: Suc-
cess of Mental State
Manipulation. Par-
ticipants’ choices of ob-
ject to play indicated
that the robot success-
fully occluded its cho-
sen object as described
in hypothesis one (Fig-
ure 9). In condition two
(no object visible) the
participants showed no
strong preference for ei-
ther object; in the other
conditions the partici-
pants chose the same
object as the robot
was openly carrying:
the football in condi-
tion one (the deception
is successful, and the human loses) and the cylinder in condition three (the
human is correct, and wins).

In condition one and two, many subjects change their choice of object after
seeing the second video (revealing both of the robot’s hands). In condition two
this change happens as expected; after the first video the subjects have little
preference, but then after seeing the second video they switch their answer to
the newly revealed cylinder.

In condition one, when the deception is revealed many participants switch
from their initial choice of football to the now revealed cylinder. While technically
the robot could play either item (it has both in its hands), cylinder is chosen
most frequently as expected by the hypothesis. This choice is consistent with
applying a deceptive motive to the robot: it was hiding the cylinder on purpose,
and therefore means to play it. In written responses, 11 of the 18 who chose the
cylinder (the choice predicted by hypothesis one) used language that indicated
some awareness of mental state manipulation – that they chose the cylinder
because the robot was “hiding” it from the subject.
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Despite cylinder being the most frequent choice, many participants were still
undecided or chose the football. An informal analysis of the written comments
suggests a few causes. Of the “No Preference” group, six gave mechanistic de-
scriptions of the robot (without attributing a motive for hiding the object, it’s
not clear which of the two objects the robot would play), while three reacted
oppositely and felt the robot was so tricky that they were not willing to choose
the now obvious cylinder. Many of the remaining “No Preference” and “Foot-
ball” subjects indicated some level of confusion or seem to have missed elements
of the video.

Hypothesis 2: Willingness of Subjects to Team with Robot. After each
video, subjects were asked whether in future games they would prefer to have
the robot on their team or on the opposing team (Figure 10).
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Fig. 10. Human is asked whether, if they were to play an-
other game, they would choose to have the robot on their
team or the other team. After the first video, participants
want to team with the robot significantly more in condi-
tion two than in one or three (p < .01). In condition one
subjects change their answer in favor of teaming with the
robot after the second video (p < .001).

Hypothesis two pre-
dicts that subjects will
be more willing to team
with a robot that is
able to perform men-
tal state manipulations.
From the analysis of hy-
pothesis one, we know
that subjects largely
were fooled by the
robot’s deception in con-
dition one, choosing the
football. Consistent with
this expectation, after
watching only the first
video, subjects in con-
ditions one and three
were less likely to want
to team with the robot
as compared with con-

dition two, where they witness the robot hiding an object. Additionally, the
subjects are more willing to team with the robot in condition one after the sec-
ond video reveals the robot’s manipulation. These differences indicate that when
people are aware of mental state manipulation capabilities, they are more willing
to team with the robot.

In contrast, in condition two the teaming preferences change little after seeing
the second video – this lack of change is consistent with the hypothesis, because
although the item is revealed, no new information about the robot’s capabilities
are exposed.

Hypothesis 3: Attribution of Mental States to Robot. In addition to
the above questions, subjects were asked to rate their agreement with four
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statements about the robot’s performance and internal mental functions on a
five point scale. By asking these questions before and after the deception is
revealed in condition one, we can examine how that revelation changes the par-
ticipants’ evaluation of the robot and to what extent it affects their attribution
of mental states. Figure 11 shows how the subjects’ opinions changed in support
of hypothesis three.
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Fig. 11. Data showing subject’s rating of the robot on
four questions (using a five point scale) in condition one.
Subjects in condition one were asked these questions once
after watching the first video of the robot’s turn. They
are asked to rate the robot again after the robot’s hidden
behavior is revealed through the second video. For each
question, the responses change significantly after watching
the second video (p < .01).

Results Summary.
Through the subjects’
object choices in the
three conditions, the
study showed that the
mental state manip-
ulation performed by
the robot was suc-
cessful. The mental
state manipulation
goals the robot pursued
did indeed change
the behavior of the
subjects.

The study also
showed that these behav-
iors were readable to the

subjects. After watching the manipulation behavior from a second angle, subjects
were able to better predict the robot’s actions based on a correct understanding
of its deceptive motivation for hiding its actions.

Finally, these capabilities had a positive effect on subjects’ willingness to
work with the robot, and raised their rating of the robot’s capabilities. Subjects’
discovery of the mental state manipulation changed both their mechanistic de-
scription of the robot’s behavior, as well as their description of its behavior in
terms of intentions.

5 Discussion

The ability of humans to perceive hidden mental states of others is well studied.
Researchers have shown that humans can determine the goals behind observed
actions [11], and that similar brain responses occur to one’s own actions and
observing the actions of others [12]. People are also able to both infer certain
mental states of others based on geometrically correct perception models and
maintain that model even when it differs from one’s own [16,17]. These abilities
facilitate many human-human interactions, and we believe that endowing a robot
with these skills will provide a significant advantage for interacting with people.

Detailed perceptual modeling has been used to improve the accuracy of ac-
tivity recognition[6], to resolve ambiguities in an operator’s command[15], to
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employ perspective taking to predict behavior [8], and even to hide from sight
[14]. Perspective taking is also used to compare first-person actions to those per-
formed by a human for recognition[7]. Others use perspective taking to predict
the next action of their opponent in a competitive video game scenario[9]. Sys-
tems also have demonstrated very complex plans in the space of mental state
manipulation[10], however these tend to abstract away the connection between
mental states and world, operating in simulators where mental states are prop-
agated through the rules of abstract actions. Our system combines aspects from
both of these areas, allowing for mental state manipulation in the space of real
perception and action (Figure 1). Others [13] have studied human reactions to
a robot that openly cheats to win, however our work focuses on the subjects’
reaction to active mental state manipulation.

The focus of this work has been to leverage how embodiment connects the
observable and alterable world with the hidden mental states of other agents
which cannot be directly observed or operated on. Humans and robots, while
vastly different, share a common problem of being embodied agents with sensory
motor loops based on affecting and observing the physical world around them. By
modeling a human’s connection between mental states and the world as similar
to its own, the robot can add altering mental states in others to its repertoire of
possible goals.

Due to the detailed nature of the mental state modeling and simulations of
the future, it would be computationally expensive to create long term plans
with these mechanisms. However, a long term plan at this level of detail is not
necessarily productive - it is not worth considering the exact hand motion I’ll
need for a very specific situation occurring tomorrow. Instead, this level of detail
is useful in the very short term, for determining how to perform the next actions
appropriately. Interesting future work is to integrate these techniques with a
longer term, more abstract mechanism, allowing longer plans with mixed levels
of detail.

The major contributions of this paper are: an implementation which proac-
tively manipulates human mental states at the level of perception and physical
action and an evaluation of how this ability is perceived by humans.
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