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Abstract

The objective of our research effort is to enable robots
to engage in complex collaborative tasks with human-
robot interaction. To function as a reliable assistant or
teammate, the robot must be able to adapt to the ac-
tions of its human partner and respond to temporal vari-
ations in its own and its partner’s actions. Dynamic plan
execution algorithms provide a fast and robust method
of executing collaborative multi-robot tasks in the pres-
ence of temporal uncertainty. However, current state
of the art algorithms, rely on hand-crafted plans, pro-
viding no means of generating plans for new tasks. In
this paper, we outline our approach for learning a model
of collaborative robot behavior by observing human-
human interaction of the target task. Through statistical
analysis of the recorded human behavior we extract pat-
terns of common behavior, and use the resulting model
to learn a temporal plan. The result is a learning frame-
work that automatically produces temporal plans for use
with dynamic planning that model human collaborative
behavior and produce human-like behavior in the robot.
In this paper, we present our current progress in the de-
velopment of this learning framework.

Introduction

The objective of our research effort is to enable robots to
learn robust and temporally fluid models of collaborative be-
havior based on observation of human-human interaction.
To reliably assist a human teammate, a robot must not only
perform functionally valid actions, but must also behave in
a predictable manner, be able to anticipate the actions of its
partner, and adapt and respond to human actions. To achieve
this level of interaction in a robust manner, the robot must
be able to reason about action duration, failure recovery, and
the temporal uncertainty in its own behavior and the actions
of others.

Recent research in the area of dynamic plan execution has
led to the development of techniques that address many of
the above challenges by enabling robots to absorb some tem-
poral disturbances at runtime through the use of a flexible-
time plan representation (Brenner 2003; Lemai and Ingrand
2004; Smith et al. 2006). Such systems typically utilize
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a two-step planning process composed of fask assignment
to allocate elements of the task to different teammates, and
synchronization to enforce ordering constraints and handle
concurrency. The outcome if the planning process is a Sim-
ple Temporal Network (STN) (Dechter, Meiri, and Pearl
1991), which is then dynamically executed by an execu-
tive that schedules the execution of task elements online as
the task progresses (Muscettola, Morris, and Tsamardinos
1998). The result is a system that is able to adapt to tempo-
ral uncertainty by reassigning actions in response to changes
that occur before execution of planned actions. However,
events that result in re-assignment or re-synchronization due
to action failure still require plan re-planning or repair. Both
of these are computationally expensive processes that can
significantly slow task execution for highly uncertain or dy-
namic tasks, making them intractable for use in tasks involv-
ing human teammates.

The recently introduced Chaski framework for dynamic
plan execution (Shah, Conrad, and Williams 2009) ad-
dresses the action failure problem through just-in-time task
assignment and synchronization. Given a temporal plan, the
Chaski executive enables an agent to dynamically update its
plan online in response to the actions of other agents and
disturbances in plan execution. The result is a temporally
flexible framework that enables the agent to select, sched-
ule and execute actions that are guaranteed to be temporally
consistent and logically valid within the multi-agent plan.
Experimental evaluation using two robotic arms has shown
the Chaski framework to be highly effective in scheduling
actions in a way that is robust to variations in action dura-
tion (Shah, Conrad, and Williams 2009).

The above describes the current state-of-the-art systems.
They are robust to action failures, temporal variations in ac-
tion durations, and are able to respond appropriately to vari-
ations in teammate behavior and the environment. However,
systems such as the Chaski executive require that a task plan
be provided for the executor to execute. The plan must de-
scribe not only the actions that need to be taken and their
ordering constraints, but also the temporal bounds on the
execution time of each action. In all work to date these
plans have been manually constructed by the human user,
with temporal constraints estimated based on previously ob-
served robot behavior. Developing a means of learning tem-
poral plans would provide the robot with a powerful tool for



autonomously expanding its abilities through the observa-
tion of human collaborative behavior.

In this paper, we outline an algorithm for learning tem-
poral plan representations based on observations of human
collaborative task execution. In transferring collaborative
behavior from humans, our goals are to enable the robot
to generate behavior that is not only effective in perform-
ing the task, but also conforms to expected social norms and
is predictable for the human partner. Using models of inter-
human interaction obtained from analysis of recorded obser-
vations, our goal is to generate robust and temporally fluid
autonomous robot behavior that closely resembles that of a
human. To ensure that our probabilistic model is robust, a
large volume of data will be gathered in a virtual game envi-
ronment that closely resembles the real-world environment
in which the robot will be tested. The resulting models of
human behavior will then be used to learn a temporal plan.

The specific steps of our approach are as follows:

1. Design and deploy a multi-player online game that logs
the interaction between two players as they perform a col-
laborative task.

2. Collect a large corpus of data recording the physical ac-
tions, text messages and gestural communication used for
coordination by the human players.

3. Analyze the data and generate a statistical Plan Network
model that encodes context-sensitive patterns of expected
behavior (Orkin and Roy 2007)

4. Develop an algorithm that allows us to use our data cor-
pus and the Plan Network model to generate a multi-agent
temporal plan, encoded using the Reactive Model-based
Programming Language (RMPL) (Ingham, Ragno, and
Williams 2001)

5. Apply the Chaski framework to execute the resulting tem-
poral plan, allowing two simulated game agents to per-
form the collaborative task.

6. Evaluate temporal plan execution using a physical robot
in a real-world environment that closely resembles the
gaming task.

In the following section we present an overview of the
Chaski executive. We then present the target collaborative
domain, followed by a detailed ooutline of each step in the
development pipeline.

Chaski

Collaborative multi-agent systems typically utilize a two-
step planning process composed of task assignment, to allo-
cate activities to each agent, and synchronization, to ensure
that all activity constraints are met. The Chaski executive
(Shah, Conrad, and Williams 2009) enables the execution
of temporal flexible plans with just-in-time task assignment
and synchronization. During online task execution, Chaski
dynamically updates its temporal plan in response to the ac-
tions of other agents and disturbances in action execution,
such as delay and failure. Using the updated plan, each
agent then selects, schedules and executes actions that are
guaranteed to be temporally consistent and logically valid

within the multi-agent collaborative plan. Unlike previous
solutions, Chaski does not require expensive re-planning or
plan repair, providing a fast and efficient solution for dy-
namic plan execution.

The input to Chaski is a temporal plan represented as
P = (A,V,C, L), where A is the set of agents, V' is the set
of activities, C is the set of temporal constraints over activi-
ties, and L is the set of logical constraints, such as resources.
An additional function A — V defines the set of activi-
ties each agent can perform, and their temporal constraints.
Traditionally, temporal plan P that serves as the input to
Chaski is manually generated ahead of time by the user.
To help the user concisely encode the temporal plan, pre-
vious work has introduced the Reactive Model-based Pro-
gramming Language (Ingham, Ragno, and Williams 2001;
Effinger, Hofmann, and Williams 2005). RMPL is a con-
cise task-level programming language that can be compiled
to generate the complete temporal plan which is then exe-
cuted by Chaski. We provide an example of a plan encoded
in RMPL at the end of the paper. Using this type of plan, the
Chaski executive generates a dynamic execution policy that
guarantees temporally consistent and logically valid task as-
signments.

Task Domain

The task domain used in our experiments is a collaborative
search and retrieval task involving a human and a robot. The
goal of the human-robot team is to locate the target objects
and deposit them into specified bins. To encourage users to
perform the desired behavior, the task will be framed as a
competition, with different amounts of points awarded for
depositing the various objects into the correct bins. The to-
tal score for the challenge will be based on the sum of the
points awarded for object collection. Time pressure will be
introduced via a pre-defined time limit.

In the virtual game scenario, two human players take on
the roles of two different characters — a robot avatar and a
human astronaut avatar (Figure 1). The game introduces
the players to the search and retrieval task and the overall
game scenario, in which the teammates must quickly collect
all critical supplies and make it to their spaceship before the
oxygen supplies run out. The abilities of each avatar are con-
strained to the real-world abilities of their respective phys-
ical embodiments. Players are randomly paired together
online, and can communicate with each other through on-
screen text messaging and the gestures and actions of their
avatars. Before the start of the game, players are made aware
that they are participating in a research study.

The game environment is designed to take advantage of
the complementary abilities of the robot and human. Al-
though the players are not given explicit instructions or
roles, the environment is designed to include affordances
specific to both types of players. Some objects are acces-
sible only to the robot through the use of locked, motor-
ized boxes that can only be opened by special RFID “keys”,
while other objects are more easily detected by the robot’s
Organic Compound Scanner than the human eye. The hu-
man player, on the other hand, will have greater navigational
speed and dexterity, and will be better able to reach objects



Figure 1: Screenshot of the online game environment.

in cluttered environments. Successful completion of the task
will rely on communication and collaboration between both
teammates.

On online version of this game will be used to gather
a data corpus consisting of hundreds of interactions. This
dataset will be used to learn models for autonomous col-
laborative robot behavior that will then be evaluated using
a physical robotic platform. Fo the evaluation, the simu-
lated game environment will be recreated as closely as pos-
sible in the real world. The robot used for this task will
be the Mobile-Dexterous-Social (MDS) robotic platform,
which combines a mobile base with an anthropomorphic up-
per body (Figure 2). The MDS robot is equipped with a so-
phisticated biologically-inspired vision system that supports
animate vision for shared attention to visually communicate
the robot’s intentions to human observers. The auditory in-
puts support a microphone array for sound localization, as
well as a dedicated speech channel via a wearable micro-
phone for speech recognition. Two dexterous hands provide
capability to grasp and lift objects.

Due to the complexity of the search and retrieval task, a
high precision offboard Vicon MX camera system will be
used to supplement the robot’s onboard sensors. The Vicon
system will be used to track the position of the robot, human,
and objects in the environment in real time using lightweight
reflective markers attached to object surfaces. This tracking
system will enable the robot to have a greater degree of envi-
ronmental awareness that is similar to that of a human. The
human teammate will be fitted with uniquely marked hat and
gloves to enable the system to accurately identify the direc-
tion of the person’s gaze and gestures. This information will
be critical for inferring the contextual meaning of the user’s
utterances.

Figure 2: The Mobile-Dexterous-Social (MDS) robot.

Human Performance Corpus

A large body of data capturing a diverse set of interactions
with many different people is required in order to create a
robust statistical model of typical collaborative human be-
havior. Acquiring this data in real-world trials would be
prohibitively expensive, requiring many hours to recruit,
train and record study participants. Instead, our approach
will take advantage of a simulated world environment that
closely resembles to real-world space in which the evalua-
tion will be conducted.

Our approach is motivated by the recently developed
“Restaurant Game” (Orkin and Roy 2007; 2009). This min-
imal investment multiplayer online (MIMO) game enabled
users to log in to a virtual environment and take the role of
one of two characters, a customer or a waiter, at a restau-
rant. Players were randomly paired with another online
player, and could interact freely with each other and objects
in the environment. In addition to standard game controls,
the users could maintain dialog with each other, and other
simulated characters, by typing freeform text. Logs of over
5,000 games were used by the authors to analyze this inter-
active human behavior and acquire contextualized models of
language and behavior for collaborative activities.

Similar to the design of the Restaurant Game, our simu-
lated world will enable users to log in and play the role of
either the robot or the human avatar. The online environment
will closely resemble its real-world counterpart in which the
final evaluation will take place. The set of available actions
and their speed will closely approximate real-world actions
for each player. The human avatar will be able to move to
any location in the space, as well as pick up, carry, drop, and
pass objects. The robot avatar will be able to perform a sim-
ilar set of actions, with the addition of being able to unlock
boxes and use specialized sensors. The robot’s movements
will be slower than those of the person, and it’s actions will
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Figure 3: An example Plan Network representing a ball retrieval task in which a red and yellow ball are collected into a basket.
Solid lines represent the robot’s actions and dashed lines represent human actions. Numerical ranges represent the temporal

bounds on the duration of each action.

have a non-zero probability of failure. In addition to con-
trolling an avatar, each player will be able to communicate
with his or her teammate by typing freeform text, and by us-
ing the mouse to highlight objects of interest. The purpose
of the mouse interface is to simulate gesture-based commu-
nication, such as pointing, which will be present in the real-
world interaction.

Logs recorded during game execution will record changes
to world state that occur at each timestep, such as player
movements, spoken phrases and actions taken upon the en-
vironment. Following the completion of each game, activity
recognition analysis will be performed to abstract individual
movements of the players into high-level action categories
(e.g. "GoTo”) and descriptors (e.g. ”door”). In the follow-
ing section we describe how the data will be used to build a
statistical model of typical collaborative behavior.

Learning Expected Patterns of Behavior

Data recorded in the simulated environment will provide ex-
amples of a wide variety of human behavior. Examples will
include many valid but different action orderings and dialog
interactions, as well as a large variety of extraneous actions
people may have taken while exploring, becoming familiar
with the environment, or just for fun. Our intention in struc-
turing the task as a timed challenge is to encourage all users
to have the same goals and to produce collaborative behav-
ior aimed at achieving those goals. We therefore expect that
analysis of the recorded data will enable us to bring out the
main behavioral trends that capture the core of the interac-
tive behavior.

To model what a “typical” interaction might look like,
we will take advantage of the Plan Network algorithm de-
veloped by Orkin and Roy for the Restaurant Game (Orkin
and Roy 2007). A Plan Network is a statistical model that
encodes context-sensitive expected patterns of behavior and
language. Given a large corpus of data, a Plan Network can
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not only provides a graphical visualization of all possible
actions taken, but can also be used to filter out aberrant be-
haviors that occurred infrequently and were not likely to be
a key component of the collaboration.

Figure 3 presents a Plan Network for a simple example
task in which a red and yellow ball must be retrieved and
placed into a bin. Each node of the network represents an
action, and vectors connecting the actions show the typical
ordering of actions observed. Data for both the robot and
human player is displayed — solid lines represent actions of
the robot and dashed lines those of the human. Additionally,
our game logs provide us with the ability to estimate ex-
pected action duration, and each node in the Plan Network
is labeled with the observed temporal bounds for that action
in seconds ([min, max]). When the same action can be per-
formed by both players, temporal information is maintained
separately for the robot (R) and human (H) (e.g. Pickup
Yellow Ball). By analyzing the network, we see that both
players can pick up and handle the yellow ball, but only the
robot is able to initially handle (pick up or push) the red ball,
although it can then choose to pass it to the human. The
robot’s actions are less predictable than those of a human,
and have a higher temporal variance.

In addition to providing a model of typical behavior, the
Plan Network can be used during task execution to detect
unusual behaviors performed by a user that are outside the
expected norms. Using likelihood estimates, the model is
able to score the typicality of a given behavior by evaluat-
ing how likely this behavior is to be generated by an agent
controlled by the learned model. Atypical behaviors not di-
rectly related to the task are highly likely to occur in many
instances of human-robot interaction. Providing the robot
with an ability to respond to such events appropriately may
have powerful impact on how the person perceives the robot
and on the overall success of the interaction. An interest-
ing direction for future work is to examine how the robot



should behave when its teammate goes “off-script”; politely
reminding the person to get back to work, or simply contin-
uing to perform the task alone are two possible options.

Learning a Temporal Plan

The Plan Network described in the previous section provides
us with a model representing a wide range of possible be-
havioral progressions that form the basis of the collaborative
task. Using the frequency count to select among transitions,
the system could use the Plan Network to enable the robot
to autonomously reproduce some of the more commonly en-
countered, and likely logical, behavioral sequences. How-
ever, this behavior selection mechanism lacks the ability to
reason about the actions of the other player, the overall goals
of the interaction and the temporal constraints of the system.
The robot’s actions are therefore likely to be semantically in-
valid and are not guaranteed to complete all elements of the
task (e.g. some of the objects may not be picked up by either
player).

Our future work will therefore focus on the development
of an algorithm for automatically generating a temporal plan
representation of the task that can be used by the Chaski ex-
ecutive to perform dynamic plan execution. This approach
will result in robust, temporally fluid and semantically valid
task execution that, we predict, will also conform to the so-
cial and expected norms of human behavior. To learn the
temporal plan, which will be represented in the Reactive
Model-based Programming Language, we will leverage the
Plan Network structure. RMPL is an expressive program-
ming language that contains constructs for concurrency, se-
quencing, iteration, preemption, conditional branching and
probabilistic transitions. Table 1 presents a manually coded
RMPL representation for the ball retrieval Plan Network
from Figure 3. Even for a relatively simple task, the result-
ing RMLP representation is complex, further motivating the
need for the automated plan generation methods that will be
the focus of our future research.

Evaluation in Real-World Environment

In the final stage of the project we will evaluate the perfor-
mance of the learned collaborative behavior in a complex,
real-world search and retrieval task that closely resembles
the online gaming environment. A broad range of adult
study participants will be recruited to perform the task in
collaboration with an autonomous MDS robot controlled
through dynamic plan execution. Activity recognition of
the person’s actions, together with behavioral cues, such as
speech and gestures, will be used to adapt the robot’s be-
havior to that of the human. The robot’s ability to perform
human-like gestures, gaze, facial expressions, and speech
will further aid in communication between the teammates.

All teammate interactions within the real-world environ-
ment will be logged, and users will be asked to complete an
additional survey describing their experiences. Using this
data we will evaluate the algorithm and its variations for a
wide range of performance metrics, including:

e team task performance

e how well the robot responded to human actions

BallRetrievalTask () [30,120] = {
parallel (
choose (
sequence (
R: PickupRedBall [9,27],
choose (
sequence (
R: DriveToBasket [24,65],
DropBall [1.4]
)
parallel (
R: PassToTeammate [6,13],
sequence (
H: TakeBallFromTeammate [2,11],
H: PutBallInBasket [4,6]

)
)
parallel (
R: PushRedBallToTeammate [21,38],
sequence (
H: TakeBallFromTeammate [2,11],
H: PutBallInBasket [4,6]

)
)
sequence (
H: PickupYellowBall [5,8],
H: PutBallInBasket [4,6]
)
)
if( yellowBallNotRetrieved ) thennext (

choose (
sequence (
R: PickupYellowBall [6,22],
choose (
sequence (
R: DriveToBasket [24,65],
R: DropBall [1.4]
) 14
parallel (
R: PassToTeammate [6,13],
sequence (
H: TakeBallFromTeammate [2,11],
H: PutBallInBasket [4,6]
)
)
)
)
sequence (

H: PickupYellowBall [5,8],
H: PutBallInBasket [4,6]

Table 1: The ball retrieval task represented in the Reactive
Model-based Programming Language.



e how often the robot’s actions required adaptation or cor-
rection on behalf of the human teammate

e how well the robot’s behavior adhered to human expecta-
tions

e how well the human teammates understood what the robot
was doing and why

Conclusion

In this paper, we outlined an ambitious project for learn-
ing complex temporal plans of collaborative human-robot
behavior based on observations of human-human collabora-
tion in a simulated environment. Once complete, this project
will provide a novel and powerful framework for generating
autonomous robot behavior for human-robot interaction that
takes into account temporal variations and constraints.
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