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Abstract
Spatial scaffolding is a naturally occurring human teaching
behavior, in which teachers use their bodies to spatially struc-
ture the learning environment to direct the attention of the
learner. Robotic systems can take advantage of simple, highly
reliable spatial scaffolding cues to learn from human teach-
ers. We present an integrated robotic architecture that com-
bines social attention and machine learning components to
learn tasks effectively from natural spatial scaffolding inter-
actions with human teachers. We evaluate the performance of
this architecture in comparison to human learning data drawn
from a novel study of the use of embodied cues in human
task learning and teaching behavior. This evaluation provides
quantitative evidence for the utility of spatial scaffolding to
learning systems. In addition, this evaluation supported the
construction of a novel, interactive demonstration of a hu-
manoid robot taking advantage of spatial scaffolding cues to
learn from natural human teaching behavior.

Introduction
How can we design robots that are competent, sensible
learners? Learning will be an important part of bring-
ing robots into the social, cooperative environments of our
workplaces and homes. Our research seeks to identify sim-
ple, non-verbal cues that human teachers naturally provide
that are useful for directing the attention of robot learn-
ers. The structure of social behavior and interaction en-
genders what we term “social filters:” dynamic, embodied
cues through which the teacher can guide the behavior of
the robot by emphasizing and de-emphasizing objects in the
environment.

This paper describes a novel study that we conducted
to examine the use of social filters in human task learning
and teaching behavior. Through this study, we observed
a number of salient attention-direction cues. In particular,
we argue that spatial scaffolding, in which teachers use their
bodies to spatially structure the learning environment to di-
rect the attention of the learner, is a highly valuable cue for
robotic learning systems.

In order to directly evaluate the utility of the identi-
fied cues, we integrated novel social attention and learn-
ing mechanisms into a large architecture for robot cognition.
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Working together, these mechanisms take advantage of the
structure of nonverbal human teaching behavior, allowing
the robot to learn from natural spatial scaffolding interac-
tions. We evaluated the performance of this integrated learn-
ing architecture in comparison to human learning data on
benchmark tasks drawn from the study, providing quantita-
tive evidence for the utility of the identified cues. Addition-
ally, we constructed a novel, interactive demonstration of a
humanoid robot learning tasks from natural human teaching
behavior.

There has been a large, interesting body of work focus-
ing on human gesture, especially communicative gestures
closely related to speech (Cassell 2000; McNeill 1992). In
the computer vision community, there has been significant
prior work on technical methods for tracking head pose
(Morency et al. 2002) and for recognizing hand gestures
such as pointing (Wilson and Bobick 1999). Others have
contributed work on using these cues as inputs to multi-
modal interfaces (Bolt 1980). Such interfaces often specify
fixed sets of gestures for controlling systems such as graph-
ical expert systems (Kobsa et al. 1986), natural language
systems (Neal et al. 1998), and even directable robotic as-
sistants (Fransen et al. 2007).

However, despite a large body of work on understanding
eye gaze (Langton 2000), much less work has been done on
using other embodied cues to infer a human’s emphasis and
de-emphasis in behaviorally realistic scenarios. One of the
important contributions of this work is the analysis of spatial
scaffolding cues in a human teaching and learning interac-
tion, and the empirical demonstration of the utility of spa-
tial scaffolding for robotic learning systems. In particular,
our work identifies a simple, reliable, component of spatial
scaffolding: attention direction through object movements
towards and away from the body of the learner.

Emphasis Cues Study
A set of tasks was designed to examine how teachers em-
phasize and de-emphasize objects in a learning environment
with their bodies, and how this emphasis and de-emphasis
guides the exploration of a learner and ultimately the learn-
ing that occurs.

We gathered data from 72 individual participants, com-
bined into 36 pairs. For each pair, one participant was ran-
domly assigned to play the role of teacher and the other par-
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ticipant assigned the role of learner for the duration of the
study. For all of the tasks, participants were asked not to
talk, but were told that they could communicate in any way
that they wanted other than speech. Tasks were presented in
a randomized order.

For all of the tasks, the teacher and learner stood on op-
posite sides of a tall table, with 24 colorful foam building
blocks arranged between them on the tabletop. These 24
blocks were made up of four different colors - red, green,
blue, and yellow, with six different shapes in each color -
triangle, square, small circle, short rectangle, long rectan-
gle, and a large, arch-shaped block.

Figure 1: Task instruction cards given to learners.

The two study tasks were interactive, secret constraint
tasks, where one person (the learner) knows what the task
is but does not know the secret constraint. The other person
(the teacher) doesn’t know what the task is but does know
the constraint. So, both people must work together to suc-
cessfully complete the task. For each of the tasks, the learner
received instructions, shown in figure 1, for a figure to con-
struct using the blocks. In Task 1, the learner was instructed
to construct a sailboat figure using at least 7 blocks; in Task
2, a truck/train figure using at least 8 blocks. When put to-
gether with the secret constraints, the block number require-
ments turned these tasks into modestly difficult Tangram-
style spatial puzzles.

The secret constraint handed to the teacher for Task 1 was
that “the figure must be constructed using only blue and red
blocks, and no other blocks.” The secret constraint for Task 2
was that “the figure must include all of the triangular blocks,
and none of the square blocks.” At the end of each task, the
learner was asked to write down what they thought the secret
constraint might have been.

Study Observations
Since neither participant had enough information to com-
plete the task on their own, these tasks required the direct
engagement and cooperation of both participants. Corre-
spondingly, we observed a rich range of dynamic, interactive
behaviors during these tasks.

To identify the emphasis and de-emphasis cues provided
by the teachers in these tasks, an important piece of “ground-
truth” information was exploited: for these tasks, some
of the blocks were “good,” and others of the blocks were
“bad.” In order to successfully complete the task, the teacher
needed to encourage the learner to use some of the blocks in
the construction of the figure, and to steer clear of some of
the other blocks. For example, in Task 1, the blue and red
blocks were “good,” while the green and yellow blocks were
“bad.”

We observed a wide range of embodied cues provided by
the teachers in the interactions for these two tasks, as well
as a range of different teaching styles. Positive emphasis
cues included simple hand gestures such as tapping, touch-
ing, and pointing at blocks with the index finger. These cues
were often accompanied by gaze targeting, or looking back
and forth between the learner and the target blocks. Other
positive gestures included head nodding, the “thumbs up”
gesture, and even shrugging. Teachers nodded in accompa-
niment to their own pointing gestures, and also in response
to actions taken by the learners.

Negative cues included covering up blocks, holding
blocks in place, or maintaining prolonged contact despite the
proximity of the learner’s hands. Teachers would occasion-
ally interrupt reaching motions directly by blocking the tra-
jectory of the motion or even by touching or (rarely) lightly
slapping the learner’s hand. Other negative gestures in-
cluded head shaking, finger or hand wagging, or the “thumbs
down” gesture.

An important set of cues were cues related to block move-
ment and the use of space. To positively emphasize blocks,
teachers would move them towards the learner’s body or
hands, towards the center of the table, or align them along
the edge of the table closest to the learner. Conversely,
to negatively emphasize blocks, teachers would move them
away from the learner, away from the center of the table,
or line them up along the edge of the table closest to them-
selves. Teachers often devoted significant attention to clus-
tering the blocks on the table, spatially grouping the bad
blocks with other bad blocks and the good blocks with other
good blocks. These spatial scaffolding cues were some of
the most prevalent cues in the observed interactions. Our
next step was to establish how reliable and consistent these
cues were in the recorded data set, and most importantly,
how useful these cues were for robotic learners.

Data Analysis
In order to record high-resolution data about the study inter-
actions, we developed a data-gathering system which incor-
porated multiple, synchronized streams of information about
the study participants and their environment. For all of the
tasks, we tracked the positions and orientations of the heads
and hands of both participants, recorded video of both par-
ticipants, and tracked all of the objects with which the par-
ticipants interacted.

Our data analysis pipeline is shown in figure 2. Images
of the foam blocks on the table surface (1) were provided
by a camera system mounted underneath the table. Color
segmenation (2) was used to identify pixels that were as-
sociated with the red, green, blue, and yellow blocks, and
a blob finding algorithm identified the locations of possible
blocks within the segmented images. Next, a shape recogni-
tion system (3) classified each blob as one of the six possible
block shapes, and an object tracking algorithm updated the
positions and orientations of each block using these new ob-
servations.

To track the head and hand movements of the study par-
ticipants, we employed a 10-camera motion capture sys-
tem along with customized software for tracking rigid ob-
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Figure 2: The study data processing pipeline.

jects (4). Study participants wore special gloves and base-
ball caps mounted with small, retroreflective markers that
were tracked by this system. Finally, the tracking infor-
mation about the foam blocks was mapped into the coordi-
nate system of the motion capture system, so that all of the
tracked study objects could be analyzed in the same, three-
dimensional frame of reference (5).

With all of the study objects now in the same frame of
reference, the next stage of analysis used spatial and tem-
poral relationships between the blocks and the bodies of the
participants to extract a stream of potentially salient events
that occurred during the interactions. These events included,
among other things, block movements and hand-to-block
contact events, which were important focal points for our
analysis. Our processing system recognized these events,
and attempted to ascribe agency to each one (i.e., which
agent - learner or teacher - was responsible for this event?).
Finally, statistics were compiled looking at different features
of these events, and assessing their relative utility at differ-
entiating the “good” blocks from the “bad” blocks.

Total Distance Change for Learner (cm)
Average Distance Change for Learner

per Block Movement (cm)

Figure 3: Change in distance to the body of the learner for
block movements initiated by the teacher. Negative values
represent movement towards the learner, while positive val-
ues represent movement away from the learner.

Movements Towards Learner by Block Type Movements Away From Learner by Block Type

Figure 4: Movements towards the body of the learner initi-
ated by the teacher were predictive of good blocks. Move-
ments away from the body of the learner were predictive of
bad blocks. The differentiating power of these movements
increased for more substantial changes in distance towards
and away.

One of the most interesting features that we analyzed was
movement towards and away from the bodies of the partici-
pants. The results of our analysis are summarized in figures
3 and 4. As can be seen in figure 3, the aggregate movement
of good blocks by teachers is biased very substantially in the
direction of the learners, while the aggregate movement of
bad blocks by teachers is biased away from the learners. In
fact, over the course of all of the 72 analyzed interactions,
teachers differentiated the good and bad blocks by more than
the length of a football field in terms of their movements rel-
ative to the bodies of the learners.

Movements towards the body of the student were corre-
lated with good blocks, with stronger correlations for move-
ments that more significantly changed the distance to the
learner. For changes in distance of 20cm or greater, fully
83% of such movements were applied to good blocks ver-
sus 13% for other blocks and 5% for bad blocks. A similar
pattern was seen for block movements away from the body
of the learner, with larger changes in distance being strongly
correlated with a block being bad, as shown in figure 4.

Thus, we have identified an embodied cue which might be
of significant value to a robotic system learning in this task
domain. A robot, observing a block movement performed by
a teacher, might be able to make a highly reliable guess as
to whether the target block should or should not be used by
measuring the direction and distance of the movement. Such
a cue can be interpreted simply and reliably even within the
context of a chaotic and fast-paced interaction.

Integrated Learning Architecture
In order to evaluate the utility of the spatial scaffolding cues
identified in the study, we integrated novel social attention
and learning mechanisms into a large architecture for robot
cognition. Working together, these mechanisms take advan-
tage of the structure of nonverbal human teaching behavior,
allowing the robot to learn from natural spatial scaffolding
interactions. Our implementation enabled the evaluation of
our architecture’s performance on benchmark tasks drawn
from the studies, and also supported the creation of an inter-
active, social learning demonstration.
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Our integrated learning architecture incorporates
simulation-theoretic mechanisms as a foundational and
organizational principal to support collaborative forms of
human-robot interaction. An overview of the architecture,
based on (Gray et al. 2005), is shown in Figure 5. Our
implementation enables a humanoid robot to monitor an
adjacent human teacher by simulating his or her behavior
within the robot’s own generative mechanisms on the motor,
goal-directed action, and perceptual-belief levels.
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Figure 5: System architecture overview.

Social Attention Mechanisms
The mechanisms of social attention integrated into our cog-
nitive architecture help to guide the robot’s gaze behavior,
action selection, and learning. These mechanisms also help
the robot to determine which objects in the environment the
teacher’s communicative behaviors are about.

Shared attention is a critical component for human-robot
interaction. Gaze direction in general is an important, persis-
tent communication device, verifying for the human partner
what the robot is attending to. Additionally, the ability to
share attention with a partner is a key component to social
attention (Scassellati 2001).

Referential looking is essentially “looking where some-
one else is looking”. Shared attention, on the other hand,
involves representing mental states of self and other (Baron-
Cohen 1991). To implement shared attention, the system
models both the attentional focus (what is being looked at
right now) and the referential focus (the shared focus that
activity is about). The system tracks the robot’s attentional
focus, the human’s attentional focus, and the referential fo-
cus shared by the two.

The robot’s attentional system computes the saliency (a
measure of interest) for objects in the perceivable space.
Overall saliency is a weighted sum of perceptual properties
(proximity, color, motion, etc.), the internal state of the robot
(i.e., novelty, a search target, or other goals), and social cues
(if something is pointed to, looked at, talked about, or is
the referential focus saliency increases). The item with the
highest saliency becomes the current attentional focus of the
robot, and determines the robot’s gaze direction.

The human’s attentional focus is determined by what he
or she is currently looking at. Assuming that the person’s
head orientation is a good estimate of their gaze direction,

the robot follows this gaze direction to determine which (if
any) object is the attentional focus.

The mechanism by which infants track the referential fo-
cus of communication is still an open question, but a number
of sources indicate that looking time is a key factor. This is
discussed in studies of word learning (Baldwin and Moses
1994; Bloom 2002). For example, when a child is playing
with one object and they hear an adult say “It’s a modi”, they
do not attach the label to the object they happen to be look-
ing at, but rather redirect their attention to look at what the
adult is looking at, and attach the label to this object.

For the referential focus, the system tracks a relative −
looking − time for each of the objects in the robot’s en-
vironment (relative time the object has been the attentional
focus of either the human or the robot). The object with the
most relative− looking− time is identified as the referent
of the communication between the human and the robot.

Constraint Learning and Planning Mechanisms
In order to give the robot the ability to learn from embodied,
spatial scaffolding cues in the secret-constraint task domain
of our study tasks, we developed a simple, Bayesian learning
algorithm. The learning algorithm maintained a set of clas-
sification functions which tracked the relative odds that the
various block attributes were good or bad according to the
teacher’s secret constraints. In total, ten separate classifica-
tion functions were used, one for each of the four possible
block colors and six possible block shapes.

Each time the robot observed a salient teaching cue, these
classification functions were updated using the posterior
probabilities identified through the study - the odds of the
target block being good or bad given the observed cue. At
the end of each interaction, the robot identified the single
block attribute with the most significant good/bad probabil-
ity disparity. If this attribute was a color attribute, the secret
constraint was classified as a color constraint. If it was a
shape attribute, the constraint was classified as a shape con-
straint. Next, all of the block attributes associated with the
classified constraint type were ranked from “most good” to
“most bad.” The learning algorithm proceeded as follows:

1: for each observed cue c applied to block b do
2: for each attribute ai of block b, ai ∈ a1, ..., an do
3: P (ai is good/bad)∗ = P (b is good/bad|c)
4: end for
5: renormalize attribute distributions
6: end for
7: find attribute as where P (as is good)/P (as is bad) is

most significant
8: sort all attributes aj , type(aj) = type(as), based on

P (aj is good)
It should be noted that this learning algorithm imposed

significant structural constraints on the types of rules that the
robot could learn from the interactions. However, the space
of rules that the robot considered was still large enough
to present a significant learning challenge for the robot,
with low chance performance levels. Most importantly, this
learning problem was hard enough to represent an interest-
ing evaluation of the usefulness of the identified spatial scaf-
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folding cues. The core question was: would these teaching
cues be sufficient to support successful learning?

A simple figure planning algorithm was developed to en-
able the robot to demonstrate its learning abilities. The
planning algorithm allowed the robot to use a simple spa-
tial grammar to construct target figures in different ways,
allowing for flexibility in the shapes as well as the colors of
the blocks used in the figures. The spatial grammar was es-
sentially a spatially-augmented context-free grammar. Each
rule in the grammar specified how a particular figure region
could be constructed using different arrangements of one or
more blocks. This approach allowed the robot to be quite
flexibly guided by a human teacher’s behavior.

For each rule in the grammar, a preference distribution
specified an initial bias about which alternatives the robot
should prefer. During teaching interactions, the figure plan-
ning algorithm multiplied these distributions by the esti-
mated probability of each available block being a good
block, as inferred from the teacher’s embodied cues. The re-
sulting biased probability distribution governed the robot’s
choice of which block to use at each step in constructing the
figure.

Emphasis Cues Benchmarks
The tasks from the study were used to evaluate the ability
of our integrated architecture to learn from cues that human
teachers naturally provide. The robot was presented with the
recorded behavioral data from the study tasks, and its learn-
ing performance was measured. After each observed task,
the robot was simulated “re-performing” the given task in
a non-interactive setting. The robot followed the rules ex-
tracted by its learning algorithm, and its performance was
gauged as correct or incorrect according to the teacher’s se-
cret constraint.

A cross-validation methodology was followed for both of
the benchmark tasks. The robot’s learning algorithm was
developed and tested using 6 of the 36 study sessions. The
robot’s learning performance was then evaluated on the re-
maining 30 study sessions, with 30 recorded interactions for
Task 1 and 30 recorded interactions for Task 2.

The performance of the human learners and the robot
on the benchmark tasks is presented in tables 1 and 2, re-
spectively. Human performance was gauged based on the
guesses that the learners wrote down at the end of each task
about the secret constraint. For both tasks, the secret con-
straint involved two rules. The performance of the learn-
ers was gauged using three metrics: whether or not they
correctly classified the rules as being color-based or shape-
based (Rule Type Correct), whether or not they correctly
specified either of the two rules, and finally, whether or not
they correctly specified both rules. Additionally, table 2
presents how often the robot correctly re-performed the task
following its observation of the interaction.

The results suggest that the robot was able to learn quite
successfully by paying attention to a few simple cues ex-
tracted from the teacher’s observed behavior. This is an
exciting validation both of the robot’s learning mechanisms
as well as of the usefulness of the cues themselves. These
dynamic, embodied cues are not just reliable at predicting

Table 1: Performance of the human learners on study tasks.

Task Rule Type Correct One Rule Both Rules
(color / shape) Correct Correct

Sailboat 30 (100%) 27 (90%) 26 (87%)
Truck 29 (97%) 26 (87%) 4 (13%)

Table 2: Robot’s learning performance on benchmark tasks.

Task Rule One Both Correct
Type Rule Rules Perform.

Sailboat 24 (80%) 22 (73%) 21 (70%) 21 (70%)
Truck 28 (93%) 23 (77%) 14 (47%) 23 (77%)

whether blocks are good and bad in isolation. They are
prevalent enough and consistent enough throughout the ob-
served interactions to support successful learning.

Interactive Demonstration and Evaluation
Finally, we created a demonstration which featured our robot
making use of spatial scaffolding to learn from live inter-
actions with human teachers, in a similar, secret-constraint
task domain. A mixed-reality workspace was created so that
the robot and the human teacher could both interact gestu-
rally with animated foam blocks on a virtual tabletop.

The teacher’s head and hands were tracked using the same
motion-capture tracking pipeline employed in the study. The
human manipulated the virtual blocks via a custom-built
gestural interface, which essentially converted an upturned
plasma display into a very large, augmented touch screen
(see figure 6). The interface allowed the teacher to use both
hands to pick up, slide, and rotate the blocks on the screen.

Figure 6 shows off an interaction sequence between the
robot and a human teacher. (1) The robot, instructed to build
a sailboat figure, starts to construct the figure as the teacher
watches. The teacher’s goal is to guide the robot into us-
ing only blue and red blocks to construct the figure. (2)
As the interaction proceeds, the robot tries to add a green
rectangle to the figure. The teacher interrupts, pulling the
block away from the robot. (3) As the robot continues to
build the figure, the teacher tries to help by sliding a blue
block and a red block close to the robot’s side of the screen.
(4) The teacher then watches as the robot completes (5) the
figure successfully. (6) To demonstrate that the robot has
indeed learned the constraints, the teacher walks away, and
instructs the robot to build a new figure. Without any inter-
vention from the teacher, the robot successfully constructs
the figure, a smiley-face, using only red and blue blocks.

To evaluate the effectiveness of this interaction, we con-
ducted a small user study. We gathered data from 18 new
participants, with two task interactions per participant, for
a total of 36 task interactions. The identical task protocol
was followed as was used in the human-human study, with
the robot playing the role of the learner. The human teach-
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Figure 6: Interaction sequence between the robot and a human teacher.

ers were given no prompting as to what cues or behaviors
the robot would be attending to. The robot was able to suc-
cessfully complete the task, obeying the secret constraint,
in 33 of the 36 interactions (92%). These results support
the conclusion that the spatial scaffolding cues observed in
human-human teaching interactions do indeed transfer over
into human-robot interactions, and can be effectively taken
advantage of by our integrated learning architecture.

Conclusion
This paper makes the following contributions. First, we pre-
sented a novel study of the use of embodied cues in human
task learning and teaching behavior. Through this study, we
identified a number of simple, highly reliable spatial scaf-
folding cues that robotic systems can use to learn from hu-
man teachers. Second, we presented an integrated learn-
ing architecture that combines social attention and machine
learning components to learn tasks effectively from nonver-
bal interactions with human teachers. Finally, we evaluated
the performance of this architecture in comparison to hu-
man learning data drawn from our study, and presented an
interactive demonstration of a humanoid robot taking advan-
tage of spatial scaffolding cues to learn from natural human
teaching behavior. Spatial scaffolding, in which teachers use
their bodies to spatially structure the learning environment to
direct the attention of the learner, is a highly valuable source
of information for interactive learning systems.
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