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This paper presents an overview of our work towards building humanoid robots that can work 
alongside people as cooperative teammates.  We present our theoretical framework based on a novel 
combination of Joint Intention Theory and Collaborative Discourse Theory, and demonstrate how it 
can be applied to allow a human to work cooperatively with a humanoid robot on a joint task using 
speech, gesture, and expressive cues.  Such issues must be addressed to enable many new and 
exciting applications for humanoid robots that require them assist ordinary people in daily activities 
or to work as capable members of human-robot teams.  
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1. Introduction  

 
Many new applications for autonomous robots in the human environment require them to 
help people as capable assistants or to work alongside people as cooperative members of 
human-robot teams 1,2. For instance, humanoid robots are being developed to provide the 
elderly with assistance in their home. In other applications, humanoids are being 
developed to serve as members of human-robot teams for applications in space 
exploration, search and rescue, construction, agriculture, and more. In the future, we 
expect to see more applications for robots that share our environment and tools and 
participate in joint activities with untrained humans. This poses the important question of 
how robots should communicate and work with us. 
 
1.1 Beyond Robots as Tools to Robot Partners 
 
Robots today treat us either as other objects in the environment, or at best they interact 
with us in a manner characteristic of socially impaired people. For instance, robots are 
not really aware of our goals and intentions. As a result, they don’t know how to 
appropriately adjust their behavior to help us as our goals and needs change. They 
generally do not flexibly draw their attention to what we currently find of interest so that 
their behavior can be coordinated and information can be focused about the same thing.  
They do not realize that perceiving a given situation from different perspectives impacts 
what we know and believe to be true about it. Consequently, they do not bring important 
information to our attention that is not easily accessible to us when we need it.  They are 
not deeply aware of our emotions, feelings, or attitudes. As a result they cannot prioritize 
what is the most important to do for us according to what pleases us or to what we find to 
be most urgent, relevant, or significant. Although there have been initial strides in these 
areas2, there remains significant shortcomings in the social intelligence of robots. As a 



result, robots cannot cooperate with us as teammates or help us as assistants in a human-
like way. Consequently, human-robot interaction often is reduced to using social cues 
merely as a natural interface for operating (supervising) the robot as a sophisticated tool. 
This sort of master-slave arrangement does not capture the sense of partnership that we 
mean when we speak of working “jointly with” humans. 

Rather than viewing robots as semi-autonomous tools that are directed via 
human supervision, we envision robots that can cooperate with humans as capable 
partners. For instance, consider the following collaborative task where a human and a 
humanoid robot work together shoulder-to-shoulder. The shared goal of the human and 
the robot is to assemble a physical structure using the same tools and components.  To 
work as a team, both must be in agreement as to the sequence of actions that will be 
required to assemble the structure so that the robot can manage the tools and components 
appropriately. If the robot must use some of the same tools to assemble parts of the 
structure in tandem with the human, it must carry out its task while being careful not to 
act in conflict with what the human teammate is trying to do (e.g., hoarding tools, 
assembling parts of the structure in a sequence that makes the human’s task more 
difficult, etc.). Hence, for the human-robot team to succeed, both must communicate to 
establish and maintain a set of shared beliefs and to coordinate their actions to execute 
the shared plan 

Human-robot collaboration of this nature is an important yet relatively 
unexplored kind of human-robot interaction 3. This paper describes our efforts to move 
beyond robots as tools or appliances to robots that interact with humans as capable and 
cooperative partners. We apply our theoretical framework based on joint intention theory 
4 and collaborative discourse theory 6,27 to enable our expressive humanoid robot, 
Leonardo (Figure 1), to work shoulder-to-shoulder with a human teammate on a joint 
task. The robot is able to divide the task between itself and the human collaborator while 
taking into consideration the human's actions when deciding what it should do next, and 
providing mutual support in the cases where one of the participants is unable to perform a 
certain action. To facilitate this process, the robot actively maintains a clear channel of 
communication to synchronize their respective goals and actions through the use of 
dialog, gestures, and facial expressions. 

 
 

   

Figure 1: Leonardo is a 65-degree of freedom (DoF) fully embodied humanoid robot that stands approximately 
2.5 feet tall. It is designed in collaboration with Stan Winston Studio to be able to express and gesture to people 
as well as to physically manipulate objects. The left picture shows the robotic structure, the center picture shows 
the robot when cosmetically finished, the right shows a simulated version of the robot. 



2. Theoretical Framework 
 

For applications where robots interact with people as partners, it is important to 
distinguish human-robot collaboration from other forms of human-robot interaction. 
Namely, whereas interaction entails action on someone or something else, collaboration 
is inherently working with others5,6,7. Much of the current work in human-robot 
interaction is thus aptly labeled given that the robot (or teams of robots) is often viewed 
as a tool capable of some autonomy that a remote human operator commands to carry out 
a task 8,9,10.   

What characteristics must a humanoid robot have to collaborate effectively with 
its human collaborator? To answer this, we look to insights provided by joint intention 
theory4,7. According to collaborative discourse theory6,27, joint action is conceptualized as 
doing something together as a team where the teammates share the same goal and the 
same plan of execution. Sharing information through communication acts is critical given 
that each teammate often has only partial knowledge relevant to solving the problem, 
different capabilities, and possibly diverging beliefs about the state of the task 

Bratman5 defines certain prerequisites for an activity to be considered shared 
and cooperative; he stresses the importance of mutual responsiveness, commitment to the 
joint activity and commitment to mutual support. Cohen and his collaborators4,7,11 support 
these guidelines and provide the notion of joint stepwise execution. Cohen’s theory also 
predicts that an efficient and robust collaboration scheme in a changing environment with 
partial knowledge commands an open channel of communication. Communication plays 
an important role in coordinating teammates’ roles and actions to accomplish the task. It 
also serves to establish and maintain a set of mutual beliefs (also called common ground) 
among the team members. For instance, all teammates need to establish and maintain a 
set of mutual beliefs regarding the current state of the task, the respective roles and 
capabilities of each member, the responsibilities of each teammate, etc. 

What happens when things go wrong? According to Grosz6, teammates must 
share a commitment to achieving the shared goal. They cannot abandon their efforts, but 
must instead continue to coordinate their efforts to try a different, mutually agreed upon 
plan. Furthermore, each must be committed to hold up their end, as well as be committed 
to others’ success in doing theirs 6,12. Specifically, the actions and goals that each team 
member adopts to do their part should not interfere or prevent the others in carrying out 
theirs.  

Therefore, for cooperative behavior to take place, a mutual understanding for 
how those internal states that generate observable behavior (e.g., beliefs, intents, 
commitments, desires, etc.) of the human and the robot must be established to relate to 
one another. Furthermore, both human and robot must be able to reason about and 
communicate these states to each other so that they can be shared and brought in to 
alignment to support joint activity. Hence, human-style cooperative behavior is an 
ongoing process of maintaining mutual beliefs, sharing relevant knowledge, coordinating 
action, and demonstrating commitment to doing one’s own part, helping the other to do 
theirs, and completing the shared task. Our work integrates these ideas to model and 
perform collaborative tasks for human-robot teams. 

 
 
 
  



3. A Collaborative Task Scenario 
 

In our experimental collaborative scenario, there are several buttons in front of Leonardo 
(see Figure 2).  The human stands facing the robot across from the buttons to perform 
tasks with the robot using natural social cues (e.g., speech, gesture, head pose, etc). The 
buttons can be switched ON and OFF (which changes their color).  Occasionally, a button 
that is pressed does not light up is considered a failed attempt.   

To test our collaborative task execution implementation, we use tasks comprised 
of speech recognition and understanding (section 4), vision (section 5) and simple 
manipulation skills (section 6). We have designed a set of tasks involving a number of 
sequenced steps, such as turning a set of buttons ON and then OFF, turning a button ON 
as a sub-task of turning all the buttons ON, turning single buttons ON, and others.  This 
task set represents simple and complex hierarchies and contains tasks with shared goals 
(section 7).  (Please refer to the work of Lockerd & Breazeal 13,37, where we present how 
the robot learns a generalized task representation from human tutelage). Section 8 
presents how we apply collaborative discourse to address a number of issues that arise 
within a collaborative setting --- such as how the task can (and should) be divided 
between the participants, how the collaborator's actions need to be taken into account 
when deciding what to do next, how to provide mutual support in cases of one 
participant’s inability to perform a certain action, and how to maintain a clear channel of 
communication to synchronize mutual beliefs and maintain common ground for 
intentions and actions.  
 

 

  

Figure 2: Leonardo following the human’s request to activate the middle button (left). Leonardo learns the 
labels for each of his buttons by having a person point to a specific button and name it (right). In this picture, 
Leonardo and the human are both attending to the same button as the robot learns what to call it. 

4. The Speech Understanding System 
 

We have been working in collaboration with Alan Schultz and his group at the Navy 
Research Lab to extend their natural language understanding system to support 
collaborative task-oriented dialogs and accompanying communicative and expressive 
gestures with humanoid robots. The current Nautilus speech understanding system 
supports a basic vocabulary, tracks simple contexts, and performs simple dialogs that 
involve pronoun referents, basic spatial relations (left/right, near/far, front/back, etc.), and 
shifts in point of view 9 (with respect to my reference frame versus your reference frame, 
etc.). The vocabulary has been tailored to support the kinds of actions (grasping, pressing, 



look-at, etc.), entities (buttons, people, etc.), features (color, button-ON, button-OFF, 
shape, size, etc.), and gestures (pointing, head nods, etc.) that Leonardo perceives during 
his interactions with objects and people. We have been developing perceptual, cognitive, 
and motor systems to support these dialogs. 
 
5. The Vision System 

 
Leonardo visually perceives the surrounding environment with two camera systems. The 
first is a wide-angle stereo head that is placed behind the robot to provide peripheral 
vision information.  This system is used to track people and objects in Leonardo’s 
environment.  The second is a stereo camera (with a narrower field of view) that is 
mounted in the ceiling and faces vertically downward to view Leonardo’s workspace. 
This stereo camera is used to track pointing gestures and objects in the workspace in front 
of Leonardo (e.g., the buttons based on their shape, size, color, and position). This visual 
information is normalized to real-world coordinates and calibrated to Leonardo’s frame 
of reference.  These visual systems allow the robot to detect deictic gestures (discussed 
below) used by humans to refer to objects and to direct the robot’s attention to important 
aspects of the shared context.  
 
5.1 Perceiving Objects 
 
Each button is detected and tracked via saturated color matching on the intensity data.  
The RGB video data is first converted to hue, saturation, and value (HSV) space, and the 
saturation values are then thresholded.  Pixels that pass the threshold are windowed by 
hue to isolate red, green, and blue (colors indicative of buttons. Green is also indicative of 
special calibration markers that define the distal corners of the robot's workspace).  The 
calibration markers need only be present upon initiation of the system and can then be 
removed, as neither the camera nor the robot's base are expected to move during an 
interaction.   

Once the appropriately saturated pixels have been extracted, a pixel-labeling 
algorithm is run over the results.  Connected and near-connected pixels are given the 
same label, and the extents of a particular label are computed and defined as a unique 
object (a button).  For button objects, the center pixels of the object are examined to 
determine whether they match the exterior pixels.  There is a colored LED at the center of 
each button whose lighting is toggled when the button is pressed. This enables the robot 
to have visual feedback of when a button has been turned ON.  The locations of 
calibration objects are not required after the initial workspace calibration, but the number, 
positions and pressed status of the buttons are sent out over the robot’s computational 
network on every frame. 

 
5.2 Recognizing Deictic Gestures 
 
We have implemented the ability to recognize deictic gestures used by humans to refer to 
objects and to direct the attention of others to important aspects of the shared context. For 
instance, following a person’s direction of gaze (which we estimate using head pose) 
allow people to establish joint attention with others (see Figure 3). We have also 
implemented visual routines for recognizing pointing gestures (see Figure 4). In addition, 



we have developed a suite spatial reasoning routines that allow the robot to geometrically 
follow a human’s head pose or pointing gesture to the indicated object referent.  

 

 

Figure 3: Visualizer showing the robot and a human sharing joint visual attention on the same object. The right 
image shows the visual input of a person looking at and pointing to the center button.  The left image shows the 
visualization of the robot’s internal model. The human’s gaze is shown as the dark gray vector and his pointing 
gesture is shown by the medium gray vector. The robot looks at the same button (robot’s dark gray vector) to 
establish joint attention. 

The overhead stereo camera is used to detect when the person is performing a 
pointing gesture. Detection of the arm is accomplished by background subtraction in two 
visual domains: intensity and a stereo range map. Intensity background subtraction is a 
common technique for distinguishing the salient features of an environment based on the 
fact that items move, but may not be continuously in motion.  Our technique uses a fairly 
standard unimodal Gaussian model where the mean value and standard deviation of the 
intensity of each pixel is computed over a number of video frames.  Once this training 
has completed, every pixel on each frame is compared with its mean value and the 
difference is thresholded to produce a foreground image. The threshold value of 3σ is 
typical.  More sophisticated statistical models, such as bimodal distributions 14, can be 
used (for example, to account for image variation of a periodic nature). We have not 
found this necessary, however, as a result of our use of stereo processing 15,16 to account 
for illumination effects such as shadows and false positives present in the intensity map.  
Our background models are continuously updated with a two-element IIR lowpass filter. 

To compute the foreground depth map, first a real-time depth map is produced 
using off-the-shelf hardware and correlation software for fixed-baseline parallel 
cameras17,18.  The stereo depth map is then filtered to account for correlation noise, depth 
discontinuities, and insufficient texture 19. To compute the foreground depth map, 
background subtraction is performed on this depth image using the same algorithm as in 
the intensity domain. 

The master detection image is computed by performing a logical AND operation 
on the intensity foreground and depth foreground maps.  The foreground depth image is 
more robust to illumination effects, but whereas the intensity foreground tends to suffer 
from false positives, the stereo foreground more commonly suffers from undefined areas 
due to correlation noise at depth discontinuities and patches of insufficient texture for 
stereo matching.  We therefore perform complementary morphological cleaning 
operations on each before combining them. Multiple pre-detection techniques of this type 
are increasingly popular in human segmentation for gesture extraction as processing 
power becomes available (e.g. motion and skin color 20). 



To extract the extended arm from the master image, separate regions in the 
master detection image are extracted via a multi-pass labeling and extents collection 
algorithm.  Only the first pass operates at the pixel level, so on a computational cost basis 
it is comparable to a single-pass approach.  The result regions are then sorted in 
decreasing size order, and compared against a region history for one final accumulation 
stage to combat any breakup of the segmented body part. The largest candidate regions 
are then fit with a bounding ellipse from image moments within each region, and 
evaluated for likelihood of correspondence to an arm based on orientation and aspect 
ratio. The best candidate passing these tests is designated to be the pointing arm and used 
to compute the gross arm orientation. 

 
 

   

Figure 4: Computing the deictic reference to an object in the visual scene. Left, an overhead stereo camera 
identifies the locations of the buttons in the scene and recognizes when a pointing gesture occurs, estimating the 
location of tip of the finger and the angle of the forearm. This is passed to the spatial reasoning system (right). 
This overhead viewpoint shows the buttons (medium gray), the location of the tip of the finger and base of the 
forearm (dark gray), and the identified object referent (white). 

Once the arm has been extracted, we recognize whether the hand is configured 
in a pointing gesture or not (see Figure 4).  We accomplish this by estimating the 
kurtosis, or “pointiness”, of the hand.  The distance from each arm result pixel to the arm 
centroid is computed, and the most distal point identified in the direction of the gross 
orientation.  This point is assumed to be the hand tip.  The outline of the hand is then 
traced by performing a morphological erosion on the detection image and then reapplying 
this result to the master detection image with a logical XOR operation. 
The hand outline is treated as a 1D bidirectional array of 2D features to be traversed in 
both directions, with the deviation between each pair of points summed. This result is 
compared against empirical results for various hand configurations, and the 2D general 
traverse direction is compared with the gross arm orientation.  Since the video frame rate 
is fast enough that a small amount of additional latency is acceptable, and it is not 
necessary to be able to reliably detect unusual pointing gestures that last less than a 
fraction of a second, several adjacent video frames vote on whether or not a pointing 
gesture has been detected.   
 
 
 
 



6. Object Manipulation Skills 
 

Leonardo acquires the ability to press buttons from “internal” demonstration via a 
telemetry suit worn by a human operator. In this scenario, the operator “shows” Leonardo 
how to perform an action by guiding the robot using the telemetry suit. Meanwhile, the 
robot records these specific actions as they are applied to objects at specific locations. 
The motion capture suit measures joint angles at over 40 different places of the operator’s 
hips, torso, arms and neck using potentiometers and gyros at a frame rate of up to 120 
hertz. The motion capture software associated with the suit generates accurate 3D models 
of the human in Euler angles. We convert these suit angle measurements in real-time into 
the equivalent joint angles, carefully calibrated to the robot, so that the operator can 
command Leonardo’s motors in a natural fashion. The calibrated mapping between the 
robot’s joint angles and the telemetry suit’s Euler angles is learned via an imitative 
interaction where the human mimics a repertoire of poses led by the robot 21. 

Using this approach, the human demonstrator can “show” Leonardo how to 
press a button at several different locations in its workspace (typically less than 10 
examples are needed). This defines the basis set of button-pressing examples that are 
indexed according to 2D button location provided by the robot’s vision system. While the 
robot runs autonomously, it can then interpolate these exemplars (see Equation 1) using a 
dynamically weighted blend of the recorded button pressing trajectories, based on the 
Verb & Adverb animation blending technique22. 

Equation 1 

For each joint angle Jk in the robot: 
 

Jk = Ek, i×W
i=1

NumExemplars

∑ i  

Where Ek,i is the kth joint angle in the ith exemplar, and Wi is the weight of the ith exemplar 

To determine the blend weights, we first precompute the Delaunay triangulation 
of the target points (also known as the dual of the Voronoi diagram).  Then we find the 
triangle of targets that encloses the new location, and calculate the three weights such that 
a weighted sum of those targets is equal to the position of the new button location (see 
Equation 2).  Once the weights are determined, we can blend these three source 
animations together according to the calculated weights on a per joint basis.  

Equation 2 

 
 1
To calculate blend weights for point P, find weights W1, W2, and W3 such that: 

P = T
 

W 1 =
L 

W 1+ T 2W 2 + T 3W 3
We solved this problem geometrically:

− T 1P

L

L = T 1T 2 sin( a) / sin( π − a − b)

Where :

T1T2

T3

P
•

La b W 2 and W 3 can be obtained similarly



This process is done for each frame of the resulting movement trajectory. Thus 
for each frame, each joint angle is computed using a weighted sum of the joint angles 
from all of the motion-captured source trajectories for that frame.  While this type of 
computation can result in an end effector position that is not linearly related to the blend 
weights used, we have found that approximating this relationship as linear has been 
sufficient for this case. Using this technique, Leonardo does reasonably well at pressing a 
button located anywhere in its workspace. However, we are working on improving the 
accuracy that will be necessary for more demanding dexterous manipulations23.  
 
7. Task Representation to Support Collaboration 

 
A goal-centric view is particularly crucial in a collaborative task setting, in which goals 
provide a common ground for communication and interaction. For instance, humans are 
biased to use an intention-based psychology to interpret an agent's actions 24. Moreover, it 
has repeatedly been shown that we interpret intentions and actions based on goals, not 
specific activities or motion trajectories 25.All of this argues that goals and a commitment 
to their successful completion must be central to our intentional representation of tasks, 
especially if those should be performed in collaboration with others. 
 
7.1 Intention and Task Representation 
 
We represent tasks and their constituent actions in terms of action tuples 26 augmented 
with goals that play a central role both in the precondition that triggers the execution of a 
given action tuple, and in the until-condition that signals when the action tuple has 
successfully completed.  

Our task representation currently distinguishes between two types of goals: (a) 
state-change goals that represent a change in the world, and (b) just-do-it goals that need 
to be executed regardless of their impact on the world. These two types of goals differ in 
both their evaluation as preconditions and in their evaluation as until-conditions.  As part 
of a precondition, a state-change goal must be evaluated before doing the action to 
determine if the action is needed.  As an until-condition, the robot shows commitment 
towards the state-change goal by executing the action, over multiple attempts if 
necessary, until the robot succeeds in bringing about the desired new state. This 
commitment is an important aspect of intentional behavior 7. Conversely, a just-do-it goal 
will lead to an action regardless of the world state, and will only be performed once. 

Tasks are represented in a hierarchical structure of actions and sub-tasks 
(recursively defined in the same fashion).  Since tasks, sub-tasks, and actions are derived 
from the same action tuple data structure, a tree structure is naturally afforded. It should 
be noted that goals are also associated with the successful completion of an overall task 
or sub-task, separate from the goals of each of the task’s constituents. 

 
7.2 Intention and Decision-Making 
  
When executing a task, goals as preconditions and until-conditions of actions or sub-tasks 
manage the flow of decision-making throughout the task execution process. Additionally, 
overall task goals are evaluated separately from their constituent action goals. This top-
level evaluation approach is not only more efficient than having to poll each of the 
constituent action goals, but is also conceptually in line with a goal-oriented hierarchical 



architecture. For example, consider a task with two actions.  The first action makes some 
change in the world (and has a state-change goal), and the second action reverses that 
change (also a state-change goal). The overall task goal has no net state change and 
becomes a just-do-it goal even though its constituent actions both have state-change 
goals. 

 
7.3 Task manager 

 
The task manager module maintains a collection of known task models and their 
associated names. Given this set of tasks, the robot listens for speech input that indicates 
a task-related request from the human partner.  These can be in the form of: “Leo, do task 
x” or “Leo, let’s do task x.” These requests can also be made in the form of a question: 
“Leo, can you do task x?”  In the case of a question, given Leonardo has no speech 
generating capabilities yet, the robot will answer by either nodding “yes” or shaking its 
head “no.” If the robot does not recognize the name of the requested task, or if the robot 
does not know how to perform it, he looks puzzled or shrugs his shoulders “I don’t 
know.” 

The task manager distinguishes between requests for autonomous task 
completion and invitations to task collaboration, and starts the appropriate execution 
module. If Leo is asked to do a known task on his own, then the task manager executes it 
autonomously by expanding the task’s actions and sub-tasks onto a focus stack (in a 
similar way to Grosz & Sidner 27).  The task manager proceeds to work through the 
actions on the stack popping them as they are done and, upon encountering a sub-task, 
pushing its constituent actions onto the stack. The robot thus progresses through the task 
tree until the task's goals are achieved.  

 
7.4 Dynamic Meshing of Sub-plans 
 
Leonardo's intention system is a joint-intention model that dynamically assigns tasks 
between the members of the collaboration team. Leo derives his own intentions based on 
a dynamic meshing of sub-plans according to his own actions and abilities, the actions of 
the human partner, Leo’s understanding of the common goal of the team, and his 
assessment of the current task state. For instance, Leonardo is able to communicate with 
the human teammate about the commencement and completion of task steps within a 
turn-taking interaction (see the following section). Specifically, the robot is able to 
recognize changes in the task environment, as well as successes and failures on both 
Leo’s and his teammate's side.  Most importantly, Leonardo is able to communicate to 
the human teammate the successful completion or inability to accomplish a crucial task 
step to the complete joint action. 

 
8. Collaborative Interaction  

 
To make the collaboration a natural human interaction, we have implemented a number 
of mechanisms that people use during collaborative discourse. In particular, we have 
focused on task-oriented dialogs (section 8.1), flexible turn taking (section 8.2), 
communication acts to support joint activity (section 8.3), and self- assessment and 
mutual support (section 8.4) for joint activity. 



 
8.1 Gestures and Expressions for Task-Oriented Dialogs 

 
Dialog is fundamentally a cooperative28, and we have implemented a suite of a 
collaborative task-oriented conversation and gestural policies for Leonardo. Cohen et. 
al.11 argue that much of task-oriented dialog can be understood in terms of Joint Intention 
Theory (see section 2.1). Accordingly, each conversant is committed to the shared goal of 
establishing and maintaining a state of mutual belief with the other. To succeed, the 
speaker composes a description that is adequate for the purpose of being understood by 
the listener, and the listener shares the goal of understanding the speaker. These 
communication acts serve to achieve robust team behavior despite adverse conditions, 
including breaks in communication and other difficulties in achieving the team goals. 

Cohen et. al. 11 analyzed task dialogs where an expert instructs a novice on how 
to assemble a physical device. We have implemented conversation policies for those key 
discourse functions identified by Cohen and his collaborators. These include discourse 
organizational markers (such as “now,” “next,” etc.) that are used by the expert to 
synchronize the start of new joint actions, elaborations when the expert does not believe 
that the apprentice understands what to do next, clarifications when the apprentice does 
not understand what the expert wants next, confirmations so that both share the mutual 
belief that the previous step has been attained, and referential elaborations and 
confirmations of successful identification to communicate the important context features 
for each step in the task.  

It is important to note that expressive cues such as the robot’s gestures and facial 
expressions can be used to serve this purpose as well as speech acts (especially since 
Leonardo does not speak yet). A summary of Leonardo’s cues are provided in Table 1. 
For instance, Leonardo performs head nods for confirmations (and shakes is head to not 
confirm), and it shrugs his shoulders with an expression of confusion to request 
clarification or elaboration from the human instructor. The robot looks to the button that 
is currently being named by the instructor to confirm successful identification of the 
target. Leonardo then looks back to the human to confirm that it has finished associating 
the label with the appropriate button and is ready to relinquish its turn (see Table 2). The 
robot can demonstrate its knowledge of the button names that it has been taught by 
pointing to the correct button in response to the human’s query “Which is the red 
button?” This confirms that both human and robot share the same belief regarding which 
the button is called by what name. 

 
Social Cue Communicated Intention Interaction Function 

Follows gesture to Object of 
Attention (OOA) 

Establish OOA common ground OOA set & ready for labeling 

Point to object, look to object Identify a particular object as 
referential focus (e.g., 
demonstrate correct association 
of name with object). 

Confirm mutual belief about a 
particular object referent (e.g., 
successful identification of the target) 

Confirming Nod (short)  Confirmation (e.g., OK, got it) Update common ground of task state 
(e.g., attach label, start learning, etc.) 

Affirming Nod (long) Affirm query (e.g., Yes, I can) Affirmation to query 
Leaning forward and raising one 
ear towards human 

Cannot understand (unable to 
recognize/parse speech) 

Cues the human to repeat what was 
last said  



Cocking head and shrugging 
(express confusion) 

Cannot perform the request (lack 
of understanding) 

Cues the human to add information or 
rectify shared beliefs (request 
clarification or elaboration) 

Shake head Cannot perform the request 
(lack of ability) 

Cues that robot is not able to perform 
the request 

Table 1: Robot’s gestures and expressions to support transparent communication of robot's internal state to 
human. 

Attention following and attention directing skills can be accompanied by 
conversational policies along with gestures and shifts of gaze for repair, elaboration, and 
confirmation to confirm a shared referential focus and to maintain mutual beliefs between 
human and robot. For instance, these skills are of particular importance for situations 
where an occluding barrier forces a robot and its human teammate to see different aspects 
of the workspace as discussed in the introduction. In short, human and robot will have to 
share information and direct the attention of the other to establish and maintain a set of 
mutual beliefs and the same referential focus. 

In addition, back-channel signals (such as quick head nods) are given by the 
robot to let the human speaker know that she is being understood. These are important 
skills for robots that must engage humans in collaborative dialog where communication 
signals (both verbal and non-verbal) are frequently exchanged to let the conversants 
know that each is being properly understood by the other---and equally important, when 
communication breaks down and needs to be repaired. If Leonardo cannot parse the 
person’s utterance, for instance, the robot displays a look of confusion to indicate that it 
is having problems understanding the speaker. A small, confirming nod is given to 
indicate when the robot has understood the utterance. 

 
8.2 Turn Taking Skills 
 
We have supplemented our models of collaborative dialog and gesture with flexible turn-
taking skills modeled after those used by humans 29. The exchange of speaking turns in 
human conversation is robust despite interruptions, incomplete utterances, and the like. 
Well studied by discourse theorists, humans employ a variety of para-linguistic social 
cues, called envelope displays, to manage who is to talk at which times in an intricate 
system of turn taking 29. These paralinguistic social cues (such as raising one's brows and 
establishing eye contact to relinquish one's speaking turn, or looking aside and 
positioning one’s hands in preparation to gesture in order to hold one's speaking turn 
when speech is paused) have been implemented with success in embodied conversational 
agents 30,31 as well as expressive robots 32,33.  
 

Social Cue Communicated Intention Interaction Function 
Small ear perk and slight lean 
forward 

Attention to human voice Cues that robot is listening and 
attending to human 

Break gaze, perform action Acquire floor and begin turn While the robot looks away, its 
turn is in progress 

Looks back at human, arms relaxed Turn is completed Relinquish turn back to human 

Table 2: Implemented suite of envelope displays for flexible turn taking skills. 



A number of envelope displays have been implemented on Leonardo to facilitate 
the exchange of turns between human and robot (see Table 2). To relinquish its turn, 
Leonardo makes eye contact with the person, raises its brows, and relaxes its arms to a 
lower position. As the person speaks, the robot continues to look attentively at the 
speaker and perks his ears so that she knows that the robot is listening to her. When she 
has finished her utterance, Leonardo lifts its arms to show initiative in taking its turn and 
breaks eye contact ---often looking to the object that the person referred to in her last 
utterance (e.g., to one of the buttons). 
 
8.3 Communication to Support Joint Activity 

 
While usually conforming to this turn-taking approach, the robot can also keep track of 
simultaneous actions, in which the human performs an action while Leo is working on 
another part of the task.  If this is the case, Leonardo will take the human’s contribution 
into account and reevaluate the goal state of the current task focus. He then might decide 
to no longer keep this part of the task on his list of things to do.  However, the robot 
needs to communicate this knowledge to the human to maintain mutual belief about the 
overall task state. Another case of simultaneous action handling is where the human 
changes the world state in opposition to Leo’s perceived task goal. In this case, the 
robot’s commitment to the goal and dynamic evaluation results in Leonardo acting to 
reverse the human’s simultaneous action. 

We have implemented a variety of gestures and other social cues to allow the 
robot communicate his internal state during collaboration – such as who the robot thinks 
is doing an action, or whether the robot believes the goal has been met  (Tables 1-3).  For 
instance, when the human partner unexpectedly changes the state of the world, Leo 
acknowledges this change by glancing briefly towards the area of change before 
redirecting his gaze to the human. This post-action glance lets the human know that the 
robot is aware of what she has done, even if it does not advance the task.  

 
Social Cue Communicated Intention Interaction Function 

Looks back at the human, 
points to himself. 

Gaze shift used to set turn taking 
boundaries. Gesture indicates perceived 
ability to perform an action. 

Self-assessment and negotiating 
sub-plan meshing. 

Glances to the OOA, and 
opens arms to the human. 

Detects inability to perform needed 
action on OOA, asking for help.  

Request human partner completes 
the step. 

Looks at workspace. Checks and updates change in task state 
due to own or other’s act. 

Acknowledge change in task state 
to other. 

Eyes follow human action. Acknowledges partner’s action, 
maintains common ground. 

Acknowledge that action is 
completed by other agent. 

Table 1: Leonardo's cues to support joint activity with human. 

If the human’s simultaneous action contributes in a positive way to the task, 
such as turning ON a button during the buttons-ON sub-task, then Leonardo will glance 
at the change and give a small confirming nod to the human. Similarly, Leo uses subtle 
nods while looking at his partner to indicate when the robot thinks a task or sub-task is 
completed. For instance, Leo will give an acknowledgement nod to the human when the 
buttons-ON sub-task is completed before starting the buttons-OFF sub-task (in case of the 



buttons-ON-then-OFF task). All of these play an important role in establishing and 
maintaining mutual beliefs between human and robot on the progress of the shared plan.    

 
8.4 Self Assessment and Mutual Support 

 
At every stage of the interaction, either the human should do her part in the task or Leo 
should do his. Before attempting an element of the task, Leo negotiates who should 
complete it.  For instance, Leo has the ability to evaluate his own capabilities.  In the 
context of the button task, Leonardo can assess whether he can reach each button or not. 
If he is able to complete the task element (e.g., press a particular button) then he will 
offer to do so (see Table 3).  Conversely, whenever he believes that he cannot do the 
action (e.g., because he cannot reach the button) he will ask the human for help.  
 

    

Figure 5: (a) Leonardo participating in a collaborative button-pressing task. (b) Leonardo negotiating his turn 
for an action he is able to perform. 

Since Leonardo does not have speaking capabilities yet, he indicates his 
willingness to perform an action by pointing to himself, and adopting an alert posture and 
facial expression (Figure 5a). Analogously, when detecting an inability to perform an 
action assigned to him, Leonardo’s expression indicates helplessness, as he gestures 
toward the human in a request for her to perform the intended action (Figure 5b). 
Additionally, Leo shifts his gaze between the problematic button and his partner to direct 
her attention to what it is that the robot needs help with. 

 
9. Performing a Task In Collaboration with People 

 
In sum, our goal-oriented representation affords task collaboration between the robot and 
a human partner. We have implemented a turn taking framework in which the human 
collaborator and Leonardo can work in partnership to achieve a common goal.  This is 
made possible by continually evaluating both the state of the task and the state of the 
world before trying to execute an action.  

We placed a high importance on communicating the robot’s perceived state of 
the world and the task (recall our discussion in section 2). Goals refer to world state as 
well as to activity state, establishing common ground between the robot and the human. 
As a result, joint intention, attention and planning is naturally achieved. Throughout the 
collaboration, the human partner has a clear idea as to Leonardo’s current singular intent 
as part of the joint intent.   



We have conducted a few early experiments using the framework described 
herein, and have found these cues to play a significant role in establishing and 
maintaining mutual beliefs between the teammates on the progress of the shared plan, and 
in increasing the efficiency of the human-robot collaboration process.  Table 4 shows a 
sample transcript describing typical task collaboration between Leonardo and a human 
teammate. We chose to display the following simple tasks for reasons of transcript 
brevity: BUTTON-ONE – Toggle button one, BUTTON-ONE-AND-TWO – Turn buttons 
one and two ON. While these do not illustrate the Leonardo’s full range of goal-oriented 
task representation capabilities, they offer a sense of the joint intention and 
communicative skills fundamental to the collaborative discourse stressed in this section. 
Note that in Trial 4, there is a case of simultaneous action handling, in which the human 
changes the world state in opposition to Leo’s perceived task goal. In this case, Leo’s 
commitment to the goal and dynamic evaluation results in the reversal of the human’s 
simultaneous action.  Additional untrained user studies are currently being designed to 
quantitatively evaluate these perceived performance enhancements by comparing a 
functionally identical, but socially handicapped version of this system to our current 
implementation (i.e., the robot performs the task with social skills and cues verses 
without social skills and cues).  

 
 

Turn  Human Robot Notes 

1 “Leo, let’s do task 
BUTTONS” Shrugs “I don’t know” Leo does not know this task. 

2 “Let’s do task 
BUTTON-ONE” Looks at the buttons 

Leo acknowledges that he understands 
the task, and visibly establishes 
mutual belief on the task’s initial 
conditions. 

3  Points to himself He can do the first (and only) part of 
the task, and suggests doing so. 

4 “OK, you go” Presses button one, looking at it 
Looking away from the partner while 
operating establishes turn taking 
boundaries. 

5  Looks back at his partner Gaze shift is used to signal end of turn 

6  Nods shortly Communicates the robot’s perceived 
end of task 

7 “Leo, let’s do task 
BUTTON-ONE” 

Looks at the buttons; points to 
himself As in steps 2-3 

8 “I’ll go “ Looks at his partner  

9 Presses button one Looks at button one Acknowledges partner’s action, 
creates mutual belief 

10  Nods shortly Communicates perceived end of task. 

11 Moves button one out of 
Leo’s reach   

12 “Let us do task 
BUTTON-ONE” Looks at buttons 

Leo acknowledges that he understands 
the task, and visibly establishes 
mutual belief on the task’s initial 
conditions. 

13  
Looks at button one, then back 
at the human partner; extends his 
arms in “Help me” gesture. 

Leo assesses his capabilities and 
consequently requests support. 

14 Presses button one Looks at button one; looks back 
at human; nods shortly. 

Glance acknowledges partner’s action 
and creates mutual belief as to the 
task’s completion. 



15 
“Let us do task 
BUTTON-ONE-AND-
TWO” 

Looks at buttons 

Leo acknowledges that he understands 
the task, and visibly establishes 
mutual belief on the task’s initial 
conditions 

16  Points to himself He can do the first part of the task, 
and suggests doing so. 

17 “OK, you go” Presses button one, looking at it  

18 At the same time as 17, 
presses button two   

19  Looks at button two; looks back 
at the human; nods shortly 

Acknowledges partner’s simultaneous 
action, creates mutual belief as to the 
task’s completion. 

Table 4: Sample task collaboration on single-level task.  Frames 2-14 present three collaborations on the 
BUTTON-ONE task (toggling a single button).   In the first collaboration, Leo negotiates and completes the 
task himself.  On the second, the human partner completes the task, and Leo’s eye gaze and gestures help to 
communicate mutual beliefs about the task state.  The third time, the button is out of reach and Leo sees that he 
has to ask the human to complete the task.  Frames 15-19 present the BUTTON-ONE-AND-TWO task 
(pressing two buttons ON).  This scenario shows Leo’s ability to dynamically take his partner’s simultaneous 
actions into account, again using gesture and eye gaze to maintain mutual beliefs about the task state. 

In summary, during the trials for the collaborative button task, Leonardo 
displayed successful meshing of sub-plans based on the dynamic state changes as a result 
of his successes, failures, and the partner’s actions. Leo’s gestures and facial expressions 
provided a natural collaborative environment, informing the human partner of Leo's 
understanding of the task state and his attempts to take or relinquish his turn. Leo's 
requests for help displayed his understanding of his own limitations, and his use of gaze 
and posture served as natural cues for the human to take appropriate action in each case.  

As future work, we would like to improve the complexity of the task 
representation as well as the interaction and dialog. Although Leonardo’s gestures and 
facial expressions are designed to communicate his internal state, combining this with an 
ability to speak would give the robot more precision in the information that he can 
convey. We would also like to implement a richer set of conversational policies to 
support collaboration. This would be useful for negotiating the meshing of sub-plans 
during task execution to make this process more flexible and efficient. We continue to 
make improvements to Leonardo’s task representation so that he can represent a larger 
class of collaborative tasks and more involved constraints between the tasks’ action 
components. 
 
10. Discussion   

 
In viewing human-robot interaction as fundamentally a collaborative process and 
designing robots that communicate using natural human social skills, we believe that 
robots will be intuitive for humans to interact. Toward this goal, we have presented our 
ability to coordinate joint intentions via collaborative dialog to perform a task jointly with 
a robot.   We have shown how we incorporate social acts that support collaborative dialog 
--- the robot continually communicates its internal state to the human partner and 
maintains a mutual belief about the task at hand.  This makes working together more 
efficient and transparent. In this section, we discuss our approach in the context of related 
work.  Viewed in the context of joint intention and collaborative discourse framework, 



our approach is significantly different than other approaches to human-robot interaction.  
Our goal is broader than interaction; we try to achieve collaboration between human and 
robot partners.   

  
10.1 Collaboration vs. Interaction 

 
As discussed in section 2, human-style cooperative behavior is an ongoing process of 
maintaining mutual beliefs, sharing relevant knowledge, coordinating action, and 
demonstrating commitment to doing one’s own part, helping the other to do theirs, and 
completing the shared task. Using joint intention theory and collaborative discourse 
theory as our theoretical framework, we have incorporated the notions of joint intentions 
and collaborative communication in our implementation.  Our goal oriented task 
representation allows the robot to reason about the task on multiple levels, easily sharing 
the plan execution with a partner and adjusting to changes in the world state.  The robot 
acts in accordance with joint intentions, and also works to communicate and establish 
mutual beliefs about the task state as the interaction progresses (e.g. confirming when a 
particular step is complete, and negotiating who will complete a portion of the task). 

In related work, Kimura et al. 34 explore human-robot collaboration with vision-
based robotic arms.37 While addressing many of the task representation and labor division 
aspects necessary for teamwork, it views the collaborative act as a planning problem, 
devoid of any social aspect. As such, it does not take advantage of the inherent human 
expertise in generating and understanding social acts. As a result, the interaction requires 
the human teammate to learn gestures and vocal utterances akin to programming 
commands. 

Fong et al. 10 consider a working partnership between human and robot in terms 
of collaborative control, where a human and a robot collaborate in vehicle 
teleoperation.14.  The robot maintains a model of the user, can take specific commands 
from the operator, and also has the ability to ask the human questions to resolve issues in 
the plan or perceptual ambiguities.  The role of the human in the partnership is to serve as 
a reliable remote source of information. A similar approach has been taken by Woern and 
Laengle 35. In contrast, our work explores collaboration where the human and robot work 
together on a collocated task where both the human and the robot can complete steps of 
the plan. Because the human and robot act upon a shared environment, the robot must 
therefore notice changes made by the human and dynamically reassess the plan and 
coordinate actions accordingly.   

Some work in the field of human and virtual agent teams also has the notion of 
shared plans that must be continually maintained and updated according to changes in the 
world state.  For instance, Traum et al. 36 have a system in which a human is part of a 
team of agents that work together in a virtual world.39 Their system addresses plan 
reassessment and uses dialog models and speech acts to negotiate a plan as a team.  Roles 
are attached to various steps of the plan, and an authority structure helps in negotiating 
control.  Our work differs in two respects from this virtual teamwork system.   First, in 
our physically embodied scenario, we explore the issues of face-to-face gestures and 
socially relevant communication acts that facilitate collaboration.  Second, we do not 
utilize an authority structure; instead, the robot and the human negotiate turns in the 
context of a shared plan.    

In sum, on one hand previous works have dealt with the scenario of a robot 
being the tool towards a human’s task goal, and on the other, the human being the tool in 



a robot’s task goal.  Our perspective is that of a balanced partnership where the human 
and robot maintain and work together on shared task goals. We have thus proposed a 
different notion of partnership than has been addressed in prior works: that of an 
autonomous robot peer working with a human as a member of a collocated team to 
accomplish a shared task.   

In realizing this goal, we believe that robots must be able to cooperate with 
humans as capable partners and communicate with them intuitively. Developing robots 
with social skills and understanding is a critical step towards this goal. To provide a 
human teammate with the right assistance at the right time, a robot partner must not only 
recognize what the person is doing (i.e., his observable actions) but also understand the 
intentions or goals being enacted.  This style of human-robot cooperation strongly 
motivates the development of robots that can infer and reason about the mental states of 
others, as well as communicate their own internal states clearly within the context of a 
shared interaction. Our goal-driven joint intention based framework is aimed at this 
promise.  

 
11. Conclusion 

 
This paper presents an overview of our work to build sociable humanoid robots that work 
cooperatively with people using natural dialog, gesture, and social cues. We have shown 
how our approach allows our robot to perform a given task cooperatively with a human 
teammate. The robot collaborates with the human to maintain a common ground from 
which joint intention, attention, and planning are naturally achieved. The robot is aware 
of its own limitations and can work with the human to dynamically divide up the task 
appropriately (i.e., meshing sub-plans), offering to do certain steps or asking the human 
to perform those steps that it cannot do for itself. If the human proactively completes a 
portion of the task, the robot can track the overall progress of the overall task (by 
monitoring the state of the world and following the task model). Leonardo demonstrates 
this understanding (e.g., using social cues such as glancing to notice the change in state 
the human just enacted, or giving quick nod to the human) so they are both in agreement 
as to what has been accomplished so far and what remains to be completed. 

Based on the work presented in this paper, we argue that building socially 
intelligent robots has extremely important implications for how we will be able to 
communicate and work with humanoid robots in the future.  These implications reach far 
beyond making robots appealing, entertaining, or easy with which to interact. Human-
robot collaboration is a critical competence for robots that will play a useful, rewarding, 
and long-term role in the daily lives of ordinary people---robots that will be able to 
cooperate with as capable partners rather than needing to be operated neither manually or 
by explicit supervision as a complicated tool. 
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