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Abstract— Spatial scaffolding is a naturally occurring human
teaching behavior, in which teachers use their bodies to spatially
structure the learning environment to direct the attention of the
learner. Robotic systems can take advantage of simple, highly
reliable spatial scaffolding cues to learn from human teachers.
We present an integrated robotic architecture that combines
social attention and machine learning components to learn
tasks effectively from natural spatial scaffolding interactions
with human teachers. We evaluate the performance of this
architecture via a human subjects experiment which examines
our humanoid robot’s ability to learn from live interactions
with human teachers in a secret-constraint task domain. This
evaluation provides quantitative evidence for the utility of
spatial scaffolding cues to systems that learn from natural
human teaching behavior.

I. INTRODUCTION

How can we design robots that are competent, sensible
learners? Learning will be an important part of bringing
robots into the social, cooperative environments of our work-
places and homes. Our research seeks to identify simple,
non-verbal cues that human teachers naturally provide that
are useful for directing the attention of robot learners. The
structure of social behavior and interaction engenders what
we term “social filters:” dynamic, embodied cues through
which the teacher can guide the behavior of the robot by
emphasizing and de-emphasizing objects in the environment.

This paper describes a study that we conducted to examine
the use of social filters in human task learning and teaching
behavior. Through this study, we observed a number of
salient attention-direction cues. In particular, we argue that
spatial scaffolding, in which teachers use their bodies to
spatially structure the learning environment to direct the
attention of the learner, is a highly valuable cue for robotic
learning systems.

In order to directly evaluate the utility of the identified
cues, we integrated novel social attention and learning mech-
anisms into a large architecture for robot cognition. Working
together, these mechanisms take advantage of the structure
of nonverbal human teaching behavior, allowing the robot
to learn from natural spatial scaffolding interactions. We
evaluated the performance of this integrated learning archi-
tecture via a human subjects experiment which examined our
humanoid robot’s ability to learn from live interactions with
human teachers in a secret-constraint task domain.

II. BACKGROUND AND RELATED LITERATURE

Inspired by the way people and animals learn from oth-
ers, researchers have begun to investigate various forms of
social learning and interactive training techniques, such as

imitation-based learning [1], clicker training [2], learning by
observation [3], and tutelage [4].

There has also been a large, interesting body of work fo-
cusing on human gesture, especially communicative gestures
closely related to speech [5], [6]. In the computer vision
community, there has been significant prior work on technical
methods for tracking head pose [7] and for recognizing hand
gestures such as pointing [8]. Others have contributed work
on using these cues as inputs to multi-modal interfaces [9],
[10]. Such interfaces often specify fixed sets of gestures for
controlling systems such as graphical expert systems [11],
natural language systems [12], and even directable robotic
assistants [13].

However, despite a large body of work on understanding
eye gaze [14], [15], much less work has been done on
using other embodied cues to infer a human’s emphasis
and de-emphasis in behaviorally realistic scenarios. One of
the important contributions of this work is the analysis of
spatial scaffolding cues in a human teaching and learning
interaction, and the empirical demonstration of the utility of
spatial scaffolding for robotic learning systems. In particular,
our work identifies a simple, reliable, component of spatial
scaffolding: attention direction through object movements
towards and away from the body of the learner.

III. EMPHASIS CUES STUDY

A set of tasks was designed to examine how teachers em-
phasize and de-emphasize objects in a learning environment
with their bodies, and how this emphasis and de-emphasis
guides the exploration of a learner and ultimately the learning
that occurs.

We gathered data from 72 individual participants, com-
bined into 36 pairs. For each pair, one participant was
randomly assigned to play the role of teacher and the other
participant assigned the role of learner for the duration of
the study. For all of the tasks, participants were asked not to
talk, but were told that they could communicate in any way
that they wanted other than speech. Tasks were presented in
a randomized order.

For all of the tasks, the teacher and learner stood on
opposite sides of a tall table, with 24 colorful foam building
blocks arranged between them on the tabletop. These 24
blocks were made up of four different colors - red, green,
blue, and yellow, with six different shapes in each color -
triangle, square, small circle, short rectangle, long rectangle,
and a large, arch-shaped block.

The two study tasks were interactive, secret constraint
tasks, where one person (the learner) knows what the task
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Fig. 1. Successfully completed figures (a sailboat and a truck/train with two
cars) for the secret-constraint tasks. The experimental task uses 24 blocks
of 6 different shapes and 4 different colors.

is but does not know the secret constraint. The other per-
son (the teacher) doesn’t know what the task is but does
know the constraint. So, both people must work together to
successfully complete the task. For each of the tasks, the
learner received instructions, for a figure to construct using
the blocks. In Task 1, the learner was instructed to construct a
sailboat figure using at least 7 blocks; in Task 2, a truck/train
figure using at least 8 blocks. When put together with the
secret constraints, the block number requirements turned
these tasks into modestly difficult Tangram-style spatial
puzzles (see Figure 1).

The secret constraint handed to the teacher for Task 1 was
that “the figure must be constructed using only blue and red
blocks, and no other blocks.” The secret constraint for Task 2
was that “the figure must include all of the triangular blocks,
and none of the square blocks.” At the end of each task, the
learner was asked to write down what they thought the secret
constraint might have been.

A. Study Observations

Since neither participant had enough information to com-
plete the task on their own, these tasks required the direct
engagement and cooperation of both participants. Corre-
spondingly, we observed a rich range of dynamic, interactive
behaviors during these tasks.

To identify the emphasis and de-emphasis cues provided
by the teachers in these tasks, an important piece of “ground-
truth” information was exploited: for these tasks, some of the
blocks were “good,” and others of the blocks were “bad.” In
order to successfully complete the task, the teacher needed
to encourage the learner to use some of the blocks in the
construction of the figure, and to steer clear of some of the
other blocks. For example, in Task 1, the blue and red blocks
were “good,” while the green and yellow blocks were “bad.”

To set the stage, we will first describe two pairs of study
interactions before diving into a more detailed analysis of
the observed cues. The first pair of interactions were for 1,
where the goal was to construct a sailboat figure using only
red and blue blocks. In one recorded interaction (session 27),
the teacher is very proactive, organizing the blocks almost
completely before the learner begins to assemble the figure.
The teacher clusters the yellow and green blocks on one side
of the table and somewhat away from the learner. The learner
initially reaches for a yellow triangle. The teacher shakes her
head and reaches to take the yellow block back away from
the learner, before continuing to organize the blocks. The
learner proceeds to complete the task successfully.

In another recorded interaction (session 7), the teacher’s
style is very different. Instead of arranging the blocks ahead
of time, he waits for the learner to make a mistake, and then
“fixes” the mistake by replacing the learner’s block with one
that fits the constraint. When the learner positions a green
rectangle as part of the mast of the sailboat figure, the teacher
quickly reaches in, pulls the block away, and replaces it with
a red rectangle. Later, the teacher fixes a triangular part of
the sail in a similar way, after which the learner completes
the task successfully.

The second pair of interactions were for Task 2, where
the goal was to construct a truck/train figure using all of
the triangular blocks, and none of the square blocks. In one
interaction (session 2), the teacher provides some very direct
structuring of the space, pulling the square blocks away from
the learner and placing the triangular blocks in front of her.
In contrast, in another interaction (session 21), the teacher
almost entirely refrains from moving the blocks. She instead
provides gestural feedback, tapping blocks and shaking her
hand “no” when the learner moves an inadmissible block,
and nodding her head when the learner moves an acceptable
block.

As these descriptions suggest, we observed a wide range
of embodied cues provided by the teachers in the interactions
for these two tasks, as well as a range of different teaching
styles. Positive emphasis cues included simple hand gestures
such as tapping, touching, and pointing at blocks with the
index finger. These cues were often accompanied by gaze
targeting, or looking back and forth between the learner
and the target blocks. Other positive gestures included head
nodding, the “thumbs up” gesture, and even shrugging.
Teachers nodded in accompaniment to their own pointing
gestures, and also in response to actions taken by the learners.

Negative cues included covering up blocks, holding blocks
in place, or maintaining prolonged contact despite the prox-
imity of the learner’s hands. Teachers would occasionally
interrupt reaching motions directly by blocking the trajectory
of the motion or even by touching or (rarely) lightly slapping
the learner’s hand. Other negative gestures included head
shaking, finger or hand wagging, or the “thumbs down”
gesture.

An important set of cues were cues related to block
movement and the use of space. To positively emphasize
blocks, teachers would move them towards the learner’s
body or hands, towards the center of the table, or align
them along the edge of the table closest to the learner.
Conversely, to negatively emphasize blocks, teachers would
move them away from the learner, away from the center of
the table, or line them up along the edge of the table closest
to themselves. Teachers often devoted significant attention
to clustering the blocks on the table, spatially grouping the
bad blocks with other bad blocks and the good blocks with
other good blocks. These spatial scaffolding cues were some
of the most prevalent cues in the observed interactions. Our
next step was to establish how reliable and consistent these
cues were in the recorded data set, and most importantly,
how useful these cues were for robotic learners.
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B. Data Analysis

In order to record high-resolution data about the study
interactions, we developed a data-gathering system which
incorporated multiple, synchronized streams of information
about the study participants and their environment. For all
of the tasks, we tracked the positions and orientations of the
heads and hands of both participants, recorded video of both
participants, and tracked all of the objects with which the
participants interacted.

Fig. 2. The study data processing pipeline.

Our data analysis pipeline is shown in figure 2. Images of
the foam blocks on the table surface (1) were provided by a
camera system mounted underneath the table. Color segme-
nation (2) was used to identify pixels that were associated
with the red, green, blue, and yellow blocks, and a blob
finding algorithm identified the locations of possible blocks
within the segmented images. Next, a shape recognition
system (3) classified each blob as one of the six possible
block shapes, and an object tracking algorithm updated the
positions and orientations of each block using these new
observations.

To track the head and hand movements of the study par-
ticipants, we employed a 10-camera motion capture system
along with customized software for tracking rigid objects
(4). Study participants wore special gloves and baseball caps
mounted with small, retroreflective markers that were tracked
by this system. Finally, the tracking information about the
foam blocks was mapped into the coordinate system of the
motion capture system, so that all of the tracked study objects
could be analyzed in the same, three-dimensional frame of
reference (5).

With all of the study objects now in the same frame
of reference, the next stage of analysis used spatial and
temporal relationships between the blocks and the bodies
of the participants to extract a stream of potentially salient
events that occurred during the interactions. These events
included, among other things, block movements and hand-
to-block contact events, which were important focal points
for our analysis. Our processing system recognized these
events, and attempted to ascribe agency to each one (i.e.,

Total Distance Change for Learner (cm)
Average Distance Change for Learner

per Block Movement (cm)

Fig. 3. Change in distance to the body of the learner for block movements
initiated by the teacher. Negative values represent movement towards the
learner, while positive values represent movement away from the learner.

which agent - learner or teacher - was responsible for this
event?). Finally, statistics were compiled looking at different
features of these events, and assessing their relative utility at
differentiating the “good” blocks from the “bad” blocks.

One of the most interesting features that we analyzed was
movement towards and away from the bodies of the partici-
pants. The results of our analysis are summarized in figures
3 and 4. As can be seen in figure 3, the aggregate movement
of good blocks by teachers is biased very substantially in the
direction of the learners, while the aggregate movement of
bad blocks by teachers is biased away from the learners. In
fact, over the course of all of the 72 analyzed interactions,
teachers differentiated the good and bad blocks by more than
the length of a football field in terms of their movements
relative to the bodies of the learners.

Movements towards the body of the student were cor-
related with good blocks, with stronger correlations for
movements that more significantly changed the distance to
the learner. For changes in distance of 20cm or greater, fully
83% of such movements were applied to good blocks versus
13% for other blocks and 5% for bad blocks. A similar
pattern was seen for block movements away from the body

Movements Towards Learner by Block Type Movements Away From Learner by Block Type

Fig. 4. Movements towards the body of the learner initiated by the teacher
were predictive of good blocks. Movements away from the body of the
learner were predictive of bad blocks. The differentiating power of these
movements increased for more substantial changes in distance towards and
away.
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of the learner, with larger changes in distance being strongly
correlated with a block being bad, as shown in figure 4.

Thus, we have identified an embodied cue which might be
of significant value to a robotic system learning in this task
domain. A robot, observing a block movement performed by
a teacher, might be able to make a highly reliable guess as
to whether the target block should or should not be used by
measuring the direction and distance of the movement. Such
a cue can be interpreted simply and reliably even within the
context of a chaotic and fast-paced interaction.

IV. INTEGRATED LEARNING ARCHITECTURE

In order to evaluate the utility of the spatial scaffolding
cues identified in the study, we integrated novel social
attention and learning mechanisms into a large architecture
for robot cognition. Working together, these mechanisms
take advantage of the structure of nonverbal human teaching
behavior, allowing the robot to learn from natural spatial
scaffolding interactions. Our implementation enabled the
creation of an interactive, social learning demonstration with
our humanoid robot, and an evaluation of the robot’s ability
to learn from live interactions with human teachers on
benchmark tasks drawn from the study.

Our integrated learning architecture incorporates
simulation-theoretic mechanisms as a foundational and
organizational principal to support collaborative forms of
human-robot interaction. An overview of the architecture,
based on [2] and [16], is shown in Figure 5. Our
implementation enables a humanoid robot to monitor an
adjacent human teacher by simulating his or her behavior
within the robot’s own generative mechanisms on the motor,
goal-directed action, and perceptual-belief levels.

A. Social Attention Mechanisms

The mechanisms of social attention integrated into our
cognitive architecture help to guide the robot’s gaze behavior,
action selection, and learning. These mechanisms also help
the robot to determine which objects in the environment the
teacher’s communicative behaviors are about.

Shared attention is a critical component for human-robot
interaction. Gaze direction in general is an important, persis-
tent communication device, verifying for the human partner
what the robot is attending to. Additionally, the ability to
share attention with a partner is a key component to social
attention [17].

Referential looking is essentially “looking where someone
else is looking”. Shared attention, on the other hand, involves
representing mental states of self and other [18]. To imple-
ment shared attention, the system models both the attentional
focus (what is being looked at right now) and the referential
focus (the shared focus that activity is about). The system
tracks the robot’s attentional focus, the human’s attentional
focus, and the referential focus shared by the two.

The robot’s attentional system computes the saliency (a
measure of interest) for objects in the perceivable space.
Overall saliency is a weighted sum of perceptual properties
(proximity, color, motion, etc.), the internal state of the robot

Fig. 6. Saliency of objects and people are computed from several
environmental and social factors.

(i.e., novelty, a search target, or other goals), and social cues
(if something is pointed to, looked at, talked about, or is
the referential focus saliency increases). The item with the
highest saliency becomes the current attentional focus of the
robot, and determines the robot’s gaze direction.

The human’s attentional focus is determined by what he
or she is currently looking at. Assuming that the person’s
head orientation is a good estimate of their gaze direction,
the robot follows this gaze direction to determine which (if
any) object is the attentional focus.

The mechanism by which infants track the referential
focus of communication is still an open question, but a
number of sources indicate that looking time is a key factor.
This is discussed in studies of word learning [19], [20]. For
example, when a child is playing with one object and they
hear an adult say “It’s a modi”, they do not attach the label
to the object they happen to be looking at, but rather redirect
their attention to look at what the adult is looking at, and
attach the label to this object.

For the referential focus, the system tracks a relative −
looking − time for each of the objects in the robot’s
environment (relative time the object has been the attentional
focus of either the human or the robot). The object with the
most relative− looking− time is identified as the referent
of the communication between the human and the robot.

B. Constraint Learning and Planning Mechanisms

In order to give the robot the ability to learn from em-
bodied, spatial scaffolding cues in the secret-constraint task
domain of our study tasks, we developed a simple, Bayesian
learning algorithm. The learning algorithm maintained a set
of classification functions which tracked the relative odds
that the various block attributes were good or bad according
to the teacher’s secret constraints. In total, ten separate
classification functions were used, one for each of the four
possible block colors and six possible block shapes.

Each time the robot observed a salient teaching cue, these
classification functions were updated using the posterior
probabilities identified through the study - the odds of the
target block being good or bad given the observed cue. At
the end of each interaction, the robot identified the single
block attribute with the most significant good/bad probability
disparity. If this attribute was a color attribute, the secret
constraint was classified as a color constraint. If it was
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Fig. 5. System architecture overview.

a shape attribute, the constraint was classified as a shape
constraint. Next, all of the block attributes associated with
the classified constraint type were ranked from “most good”
to “most bad.” The learning algorithm proceeded as follows:

1: for each observed cue c applied to block b do
2: for each attribute ai of block b, ai ∈ a1, ..., an do
3: P (ai is good/bad)∗ = P (b is good/bad|c)
4: end for
5: renormalize attribute distributions
6: end for
7: find attribute as where P (as is good)/P (as is bad) is

most significant
8: sort all attributes aj , type(aj) = type(as), based on

P (aj is good)

It should be noted that this learning algorithm imposed
significant structural constraints on the types of rules that
the robot could learn from the interactions. However, the
space of rules that the robot considered was still large enough
to present a significant learning challenge for the robot,
with low chance performance levels. Most importantly, this
learning problem was hard enough to represent an interesting
evaluation of the usefulness of the identified spatial scaffold-
ing cues. The core question was: would these teaching cues
be sufficient to support successful learning?

A simple figure planning algorithm was developed to
enable the robot to demonstrate its learning abilities. The
planning algorithm allowed the robot to use a simple spa-
tial grammar to construct target figures in different ways,
allowing for flexibility in the shapes as well as the colors
of the blocks used in the figures. The spatial grammar was
essentially a spatially-augmented context-free grammar. Each
rule in the grammar specified how a particular figure region
could be constructed using different arrangements of one or
more blocks. This approach allowed the robot to be quite
flexibly guided by a human teacher’s behavior.

For each rule in the grammar, a preference distribution

specified an initial bias about which alternatives the robot
should prefer. During teaching interactions, the figure plan-
ning algorithm multiplied these distributions by the estimated
probability of each available block being a good block, as
inferred from the teacher’s embodied cues. The resulting
biased probability distribution governed the robot’s choice
of which block to use at each step in constructing the figure.

V. INTERACTIVE DEMONSTRATION AND EVALUATION

In order to evaluate the utility of spatial scaffolding
cues and the effectiveness of our learning architecture, we
conducted a human subjects experiment which examined our
robot’s ability to learn from live interactions with human
teachers in a secret-constraint task domain. The subjects were
not told how to teach the robot other than to avoid using
verbal communication. A mixed-reality workspace using a
plasma display was created so that the robot and the human
teacher could both interact gesturally with animated foam
blocks on a virtual tabletop, as shown in figure 9. As in the
previous secret constraints study, twenty-four animated foam
blocks were displayed on the screen, with 6 different block
shapes and 4 different colors.

The robot could manipulate the virtual blocks directly,
by procedurally sliding and rotating them on the screen.
To provide feedback to the human teacher, the robot ges-
turally tracked these procedural movements with its hand
outstretched, giving the impression that the robot was levi-
tating the blocks with its hand. The robot also followed its
own movements and those of the human with its gaze, and
attended to the teacher’s hands and head using an optical
marker tracking system and customized object-tracking soft-
ware. Additionally, the robot provided gestures of confusion
and excitement at appropriate moments during the interaction
(i.e., when the robot was interrupted by the human or when
the figure was completed successfully).

The teacher manipulated the virtual blocks via a custom-
built gestural interface, which essentially converted the up-
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Fig. 7. A gestural interface (left) allowed the human and the robot to
interact with virtual foam blocks. A figure planning algorithm allowed the
robot to use a simple spatial grammar to construct figures (right) in different
ways, incorporating the guidance of the teacher.

turned plasma display into a very large, augmented touch
screen (see figure 7). The interface allowed the teacher to
use both hands to pick up, slide, and rotate the blocks on
the screen.

Replicating our previous human study, the two human-
robot study tasks were interactive, secret constraint tasks.
The robot learner knows the target figure to construct but
does not know the secret constraint, and the human teacher
knows the constraint but not the target figure. Thus, both
agents must work together to successfully complete the task.
For each of the tasks, the robot received instructions for a
figure to construct using the blocks. As in the prior human
study, the target figure was a sailboat in Task 1, and a
truck/train figure in Task 2 (see Figure 1).

The human teacher received written instructions describing
a constraint that the robot needed to obey in constructing the
figure. The secret constraint handed to the teacher for Task 1
was that “the figure must be constructed using only blue and
red blocks, and no other blocks.” The secret constraint for
Task 2 was that “the figure must include all of the triangular
blocks, and none of the square blocks.” For all of the tasks,
participants were asked not to talk, but were told that they
could communicate in any way that they wanted other than
speech. Tasks were presented in a randomized order.

VI. RESULTS

We gathered data from 18 participants, with two construc-
tion tasks per participant, for a total of 36 task interactions.
The human teachers were given no prompting as to what
cues or behaviors the robot would be attending to. The
robot was able to successfully complete the task, learning
about and obeying the secret constraint in 33 of the 36
interactions (92%). These results support the conclusion
that the spatial scaffolding cues observed in human-human
teaching interactions do indeed transfer over into human-
robot interactions, and can be effectively taken advantage of
by our integrated learning architecture.

In addition to measuring the robot’s task performance, we
also directly analyzed the recorded movement data generated
by the human teachers. A similar quantitative analysis pro-
cess was followed as was used in the previous human-human
study. The results of the analysis are summarized in figure 8,
which can be compared to the human-human data in figures
3 and 4. As before, movement of good blocks by teachers is
biased in the direction of the learner (in this case the robot),

Fig. 9. The robot took advantage of spatial scaffolding cues to learn through
live interactions with human teachers.

while movement of bad blocks is biased very substantially
away from the robot.

Also as in the human-human study, travel towards and
away from the body of the learner was strongly correlated
with whether or not the given block was good or bad.
Movements towards the body of the robot were correlated
with good blocks, with stronger correlations for movements
that more significantly changed the distance to the robot.
For changes in distance of 20cm or greater, 79% of such
movements were applied to good blocks versus 18% for other
blocks and only 3% for bad blocks. And again, a similar
pattern was seen for block movements away from the body
of the robot, with larger changes in distance being strongly
correlated with a block being bad. Thus, similar quantitative
movement behavior was observed in our human teachers in
this new study setting, which in turn supported the successful
task performance of the robot in these learning interactions.

VII. CONCLUSION

This paper has presented the results of two studies of
human nonverbal teaching behavior in an interactive, secret-
constraint construction task domain. The results highlight the
utility of a particular nonverbal cue - movements towards
and away from the body of the learner - for indicating
which objects the teacher wants the learner to interact with
and which the teacher wants the learner to avoid. We argue
that such spatial scaffolding behavior, in which teachers use
their bodies to spatially structure the learning environment to
direct the attention of the learner, is a highly valuable source
of information for interactive, robotic learning systems.

Our first study recorded the teaching and learning behavior
of human participants in our collaborative task domain. A
range of interesting nonverbal teaching cues were observed,
but our quantitative analysis highlighted the specific predic-
tive value of movements towards and away from the body
of the learner at indicating whether the target objects were
good or bad.

To more directly evaluate the utility of these nonverbal
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Fig. 8. Analyses of block movements towards and away from the body of the robot initiated by the human teacher. Observed movement behavior was
similar to the human-human study; see figures 3 and 4 for comparison.

cues, we developed an integrated learning architecture that
combines social attention and machine learning components
to learn tasks from nonverbal interactions with human teach-
ers. We evaluated the performance of this architecture via our
second study: a human subjects experiment which examined
our humanoid robot’s ability to learn from live interactions
with human teachers in a similar, secret-constraint task
domain.

Our robot learned successfully from untrained human
teachers in this task domain, which suggests that the spatial
scaffolding behaviors observed in human-human interactions
do indeed transfer over into teaching interactions with robots.
Our quantitative analysis of the movements initiated by
the human teachers further supports this conclusion, and
highlights strong similarities between the human-human and
human-robot interactive domains.
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