Perspective Taking: An Organizing Principle for Learning in
Human-Robot Interaction

Matt Berlin, Jesse Gray, Andrea L. Thomaz, Cynthia Breazeal
MIT Media Lab
20 Ames St., Cambridge, MA 02139
{mattb, jg, alockerd, cynthiab} @media.mit.edu

Abstract

The ability to interpret demonstrations from the perspective of
the teacher plays a critical role in human learning. Robotic sys-
tems that aim to learn effectively from human teachers must
similarly be able to engage in perspective taking. We present an
integrated architecture wherein the robot’s cognitive function-
ality is organized around the ability to understand the environ-
ment from the perspective of a social partner as well as its own.
The performance of this architecture on a set of learning tasks is
evaluated against human data derived from a novel study exam-
ining the importance of perspective taking in human learning.
Perspective taking, both in humans and in our architecture, fo-
cuses the agent’s attention on the subset of the problem space
that is important to the teacher. This constrained attention al-
lows the agent to overcome ambiguity and incompleteness that
can often be present in human demonstrations and thus learn
what the teacher intends to teach.

Introduction

This paper addresses an important issue in building robots that
can successfully learn from demonstrations that are provided
by “naive” human teachers who do not have expertise in the
learning algorithms used by the robot. As a result, the teacher
may provide sensible demonstrations from a human’s perspec-
tive; however, these same demonstrations may be insufficient,
incomplete, ambiguous, or otherwise “flawed” in terms of pro-
viding a correct and sufficiently complete training set in order
for the learning algorithm to generalize properly.

To address this issue, we believe that socially situated robots
will need to be designed as socially cognitive learners that
can infer the intention of the human’s instruction, even if the
teacher’s demonstrations are less than perfect for the robot.
Our approach to endowing machines with socially-cognitive
learning abilities is inspired by leading psychological theo-
ries and recent neuroscientific evidence for how human brains
might infer the mental states of others. Specifically, Simulation
Theory holds that certain parts of the brain have dual use; they
are used to not only generate behavior and mental states, but
also to predict and infer the same in others (Davies & Stone
1995; Barsalou et al. 2003; Sebanz, Bekkering, & Knoblich
2006).
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Figure 1: The Leonardo robot and graphical simulator

In this paper, we present an integrated architecture wherein
the robot’s cognitive functionality is organized around the
ability to understand the environment from the perspective of
the teacher using simulation-theoretic mechanisms. Perspec-
tive taking focuses the agent’s attention on the subset of the
problem space that is important to the teacher. Focusing on
a subset of the input/problem space directly affects the set of
hypotheses entertained by the learning algorithm, and thus di-
rectly affects the skill transferred to the agent via the inter-
action with the teacher. This constrained attention allows the
agent to overcome ambiguity and incompleteness that can of-
ten be present in human demonstrations.

The outline of this paper is as follows. First, we present
an overview of our integrated architecture which runs on a
65 degree of freedom humanoid robot and its graphical sim-
ulator (Fig. 1). We then detail the perceptual-belief pipeline,
describe our tutelage-inspired approach to task learning, and
present how perspective taking integrates with these mecha-
nisms. This architectural integration allows the robot to infer
the goal and belief states of the teacher, and thus to more ac-
curately model the intent of their demonstrations. Finally, we
present the results of a novel study examining the importance
of perspective taking in human learning. Data derived from the
suite of learning tasks in this study are used to create a bench-
mark suite to evaluate the performance of our architecture and
to illustrate the robot’s ability to learn in a human compatible
way from ambiguous demonstrations presented by a human
teacher.
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Figure 2: System Architecture Overview

Architecture Overview

Our architecture, based on (Blumberg et al. 2002), incor-
porates simulation-theoretic mechanisms as a foundational
and organizational principle to support collaborative forms of
human-robot interaction, such as the tutelage-based learning
examined in this paper. An overview of the architecture is
shown in Figure 2. Our implementation enables a humanoid
robot to monitor an adjacent human teacher by simulating his
or her behavior within the robot’s own generative mechanisms
on the motor, goal-directed action, and perceptual-belief levels
(Gray, J. et al. 2005).

While others have identified that visual perspective taking
coupled with spatial reasoning are critical for human-robot
collaboration on a shared task within a physical space (Trafton
et al. 2005), and collaborative dialog systems have investi-
gated the role of plan recognition in identifying and resolv-
ing misconceptions (see (Carberry 2001) for a review), this
is the first work to examine the role of perspective taking for
introceptive states (e.g., beliefs and goals) in a human-robot
learning task.

Belief Modeling

In order to convey how the robot interprets the environment
from the teacher’s perspective, we must first describe how the
robot understands the world from its own perspective. This
section presents a technical description of two important com-
ponents of our cognitive architecture: the Perception System
and the Belief System. The Perception System is responsi-
ble for extracting perceptual features from raw sensory infor-
mation, while the Belief System is responsible for integrating
this information into discrete object representations. The Be-
lief System represents our approach to sensor fusion, object
tracking and persistence, and short-term memory.

On every time step, the robot receives a set of sensory ob-
servations O = {01, 09, ...,on } from its various sensory pro-
cesses. Information is extracted from these observations by the
Perception System. The Perception System consists of a set of
percepts P = {p1,p2, ..., pic }, Where each p € P is a classifi-
cation function defined such that

p(o) = (m,¢,d), (1)

where m, ¢ € [0, 1] are match and confidence values and d is
an optional derived feature value. For each observation o; €
O, the Perception System produces a percept snapshot

si ={(p,m,c,d)|p € P,p(0o;) = (m,c,d),mxc >k}, (2)
where k € [0, 1] is a threshold value, typically 0.5.
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These snapshots are then clustered into discrete object rep-
resentations called beliefs by the Belief System. This cluster-
ing is typically based on the spatial relationships between the
various observations, in conjunction with other metrics of sim-
ilarity. The Belief System maintains a set of beliefs B, where
each belief b € B is a set mapping percepts to history func-
tions: b = {(pg, haz), (Py, hy), ...}. For each (p,h) € b, his a
history function defined such that

h(t) = (mi, ¢, dy) 3)

represents the “remembered” evaluation for percept p at time
t. History functions may be lossless, but they are often imple-
mented using compression schemes such as low-pass filtering
or logarithmic timescale memory structures.

A Belief System 1is fully described by
(B,G,M,d,q,w,c), where

e B is the current set of beliefs,

the tuple

e (G is a generator function map, G : P — @, where each
g € G is a history generator function where g(m, c,d) = h
is a history function as above,

e M is the belief merge function, where M (b1, bs) = V' rep-
resents the “merge” of the history information contained
within by and b,

e d = dy,ds,...,dy, is a vector of belief distance functions,
di: BxB—TR,

® ¢ = q1,q2,...,qr, is a vector of indicator functions where
each element g; denotes the applicability of d;, ¢; : B X
B — {0,1},

® w = wy,ws, ..., wr, is a vector of weights, w; € R, and

® c = ¢y, C, ...,y is a vector of culling functions, ¢; : B X
B —{0,1}.

Using the above, we define the Belief Distance Function, D,

and the Belief Culling Function, C".

L
D(b1,by) =Y wiqi(by, b2)di(by, bs) “4)
i=1

J
C(b) = H c;(b) (5)

The Belief System manages three key processes: creating
new beliefs from incoming percept snapshots, merging these
new beliefs into existing beliefs, and culling stale beliefs. For
the first of these processes, we define the function N, which
creates a new belief b; from a percept snapshot s;:

b; = N(Sl) = {(pa h)'(p7maca d) € si,
g:G(p),h:g(m,c,d)} (6)

For the second process, the Belief System merges new be-
liefs into existing ones by clustering proximal beliefs, assumed
to represent different observations of the same object. This is
accomplished via bottom-up, agglomerative clustering as fol-
lows.

For a set of beliefs B:



while 3b,, b, € B such that D(b,,b,) < thresh do
find by, by € B such that D (b, bs) is minimal
B+~ BU {M(bl,bg)} \ {bl,bg}
4: end while
Finally, the Belief System culls stale beliefs by removing all
beliefs from the current set for which C'(b) = 1.

Wy

Task and Goal Learning

We believe that flexible, goal-oriented, hierarchical task learn-
ing is imperative for learning in a collaborative setting from
a human partner, due to the human’s propensity to communi-
cate in goal-oriented and intentional terms. Hence, we have a
hierarchical, goal-oriented task representation, wherein a task
is represented by a set, S, of schema hypotheses: one primary
hypothesis and n others. A schema hypothesis has = executa-
bles, F, (each either a primitive action a or another schema), a
goal, G, and a tally, ¢, of how many seen examples have been
consistent with this hypothesis.

Goals for actions and schemas are a set of y goal beliefs
about what must hold true in order to consider this schema or
action achieved. A goal belief represents a desired change dur-
ing the action or schema by grouping a belief’s percepts into
1 criteria percepts (indicating features that holds constant over
the action or schema) and j expectation percepts (indicating
an expected feature change). This yields straightforward goal
evaluation during execution: for each goal belief, all objects
with the criteria features must match the expectation features.

Schema Representation:

S = {[(E1E$)7G? C]P7 [(ElEm)aGaC]ln}
E=a|S
B = pc,...pc; UpE, ---PE,

For the purpose of task learning, the robot can take a snap-
shot of the world (i.e. the state of the Belief System) at time
t, Smp(t), in order to later reason about world state changes.
Learning is mixed-initiative such that the robot pays atten-
tion to both its own and its partner’s actions during a learn-
ing episode. When the learning process begins, the robot cre-
ates a new schema representation, S, and saves belief snap-
shot Snp(tp). From time, ¢y, until the human indicates that
the task is finished, t.,,4, if either the robot or the human com-
pletes an action, act, the robot makes an action representation,
a = lact, G] for S:

1: For action act at time ¢; given last action at ¢,

2: G = belief changes from Snp(t,) to Snp(ts)

3: append [act, G] to executables of S

4: t, =1t
At time t.,4, this same process works to infer the goal for the
schema, S, making the goal inference from the differences in
Snp(to) and Snp(tenq). The goal inference mechanism notes
all changes that occurred over the task; however, there may
still be ambiguity around which aspects of the state change
are the goal (the change to an object, a class of objects, the
whole world state, etc.). Our approach uses hypothesis testing
coupled with human interaction to disambiguate the overall
task goal over a few examples.
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Figure 3: Architecture for modeling the human’s beliefs re-
uses the robot’s own architecture for belief maintenance.

A

Once the human indicates that the current task is
done, S contains the representation of the seen example
([(Er...E;), G, 1]). The system uses S to expand other hy-
potheses about the desired goal state to yield a hypothesis of
all goal representations, (G, consistent with the current demon-
stration (for details of this expansion process see (Lockerd &
Breazeal 2004); to accommodate the tasks described here we
additionally expand hypotheses whose goal is a state change
across a simple disjunction of object classes). The current best
schema candidate (the primary hypothesis) is chosen through
a Bayesian likelihood method: P(h|D) < P(D|h)P(h). The
data, D, is the set of all examples seen for this task. P(D|h)
is the percentage of the examples in which the state change
seen in the example is consistent with the goal representa-
tion in A. For priors, P(h), hypotheses whose goal states ap-
ply to the broadest object classes with the most specific class
descriptions are preferred (determined by number of classes
and criteria/expectation features, respectively). Thus, when a
task is first learned, every hypothesis schema is equally repre-
sented in the data, and the algorithm chooses the most specific
schema for the next execution.

Perspective Taking

In this section, we describe how perspective taking integrates
with the cognitive mechanisms discussed above: belief mod-
eling and task learning. Inferring the beliefs of the teacher al-
lows the robot to build task models which capture the intent
behind human demonstrations.

Perspective Taking and Belief Inference

When demonstrating a task to be learned, it is important that
the context within which that demonstration is performed be
the same for the teacher as it is for the learner. However, in
complex and dynamic environments, it is possible for the in-
structor’s beliefs about the context surrounding the demonstra-
tion to diverge from those of the learner. For example, a visual
occlusion could block the teacher’s viewpoint of a region of
a shared workspace (but not that of the learner) and conse-
quently lead to ambiguous demonstrations where the teacher
does not realize that the visual information of the scene differs
between them.
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Figure 4: Timeline following the progress of the robot’s be-
liefs for one button. The robot updates its belief about the but-
ton with any sensor data available - however, the robot only
integrates new data into its model of the human’s belief if the
data is available when the human is able to perceive it.

To address this issue, the robot must establish and main-
tain mutual beliefs with the human instructor about the shared
context surrounding demonstrations. The robot keeps track of
its own beliefs about object state using its Belief System, de-
scribed above. In order to model the beliefs of the human in-
structor as separate and potentially different from its own, the
robot re-uses the mechanism of its own Belief System. These
beliefs that represent the robot’s model of the human’s beliefs
are in the same format as its own, but are maintained sepa-
rately so the robot can compare differences between its beliefs
and the human’s beliefs.

As described above, belief maintenance consists of incorpo-
rating new sensor data into existing knowledge of the world.
The robot’s sensors are all in its reference frame, so objects in
the world are perceived relative to the robot’s position and ori-
entation. In order to model the beliefs of the human, the robot
re-uses the same mechanisms used for its own belief model-
ing, but first transforms the data into the reference frame of the
human (see Fig. 3).

The robot can also filter out incoming data that it believes
is not perceivable to the human, thereby preventing that new
data from updating the model of the human’s beliefs. As you
recall, the sensory observations O = {01, 02, ...,0n } are the
input to the robot’s belief system. The inputs to the secondary
belief system that models the human’s beliefs are O’, where:

O = {P()]o € O,V(d) =1} )

where:
1 if x is visible to human
V(z) = 8
(@) {0 otherwise ®
and:
P :{robot local observations}
— {person local observations} )

Visibility can be determined by a cone calculated from the hu-
man’s position and orientation, and objects on the opposite
side of known occlusions from the human can be marked in-
visible.

Maintaining this parallel set of beliefs is different from sim-
ply adding metadata to the robot’s original beliefs because it

reuses the entire architecture which has mechanisms for object
permanence, history of properties, etc. This allows for a more
sophisticated model of the human’s beliefs. For instance, Fig.
4 shows an example where this approach keeps track of the hu-
man’s incorrect beliefs about objects that have changed state
while out of the human’s view. This is important for establish-
ing and maintaining mutual beliefs in time-varying situations
where beliefs of individuals can diverge over time.

Perspective Taking and Task Learning

In a similar fashion, in order to model the task from the
demonstrator’s perspective, the robot runs a parallel copy of
its task learning engine that operates on its simulated repre-
sentation of the human’s beliefs. In essence, this focuses the
hypothesis generation mechanism on the subset of the input
space that matters to the human teacher.

At the beginning of a learning episode, the robot can take a
snapshot of the world in order to later reason about world state
changes. The integration of perspective taking means that this
snapshot can either be taken from the robot’s (R) or the hu-
man’s (H) belief perspective. Thus when the learning process
begins, the robot creates two distinct schema representations,
SRobot and Sg.m, and saves belief snapshots Snp(to, R) and
Snp(to, H). Learning proceeds as before, but operating on
these two parallel schemas.

Once the human indicates that the current task is done,
SRobot and Sy, both contain the representation of the seen
example. Having been created from the same demonstration,
the executables will be equivalent, but the goals may not be
equal since they are from differing perspectives. Maintaining
parallel schema representations gives the robot three options
when faced with inconsistent goal hypotheses: assume that the
human’s schema is correct, assume that its own schema is cor-
rect, or attempt to resolve the conflicts between the schemas.
Our evaluation in the following section focuses on the simplest
approach: take the perspective of the teacher, and assume that
their schema is correct.

Human Subjects Study

We conducted a human subjects study to evaluate our ap-
proach. The study had two purposes. First, to gather human
performance data on a set of learning tasks that were well
matched to our robot’s existing perceptual and inferential ca-
pabilities, creating a benchmark suite for our perspective tak-
ing architecture. Second, the study served to highlight the role
of perspective taking in human learning.

Study participants were asked to engage in four different
learning tasks involving foam building blocks. We gathered
data from 41 participants, divided into two groups. 20 partic-
ipants observed demonstrations provided by a human teacher
sitting opposite them (the social condition), while 21 partici-
pants were shown static images of the same demonstrations,
with the teacher absent from the scene (the nonsocial condi-
tion). Participants were asked to show their understanding of
the presented skill either by re-performing the skill on a novel
set of blocks (in the social context) or by selecting the best
matching image from a set of possible images (in the nonso-
cial context).



Figure 5: The four tasks demonstrated to participants in the
study (photos taken from the participant’s perspective). Tasks
1 and 2 were demonstrated twice with blocks in different con-
figurations. Tasks 3 and 4 were demonstrated only once.

Fig. 5 illustrates sample demonstrations of each of the four
tasks. The tasks were designed to be highly ambiguous, pro-
viding the opportunity to investigate how different types of
perspective taking might be used to resolve these ambiguities.
The subjects’ demonstrated rules can be divided into three cat-
egories: perspective taking (PT) rules, non-perspective taking
(NPT) rules, and rules that did not clearly support either hy-
pothesis (Other).

Task 1 focused on visual perspective taking during the
demonstration. Participants were shown two demonstrations
with blocks in different configurations. In both demonstra-
tions, the teacher attempted to fill all of the holes in the square
blocks with the available pegs. Critically, in both demonstra-
tions, a blue block lay within clear view of the participant but
was occluded from the view of the teacher by a barrier. The
hole of this blue block was never filled by the teacher. Thus,
an appropriate (NPT) rule might be “fill all but blue,” or “fill
all but this one,” but if the teacher’s perspective is taken into
account, a more parsimonious (PT) rule might be “fill all of
the holes” (see Fig. 6).

Task 2 focused on resource perspective taking during the
demonstration. Again, participants were shown two demon-
strations with blocks in different configurations. Various ma-
nipulations were performed to encourage the idea that some of
the blocks “belonged” to the teacher, whereas the others “be-
longed” to the participant, including spatial separation in the
arrangement of the two sets of blocks. In both demonstrations,
the teacher placed markers on only “his” red and green blocks,
ignoring his blue blocks and all of the participant’s blocks. Be-
cause of the way that the blocks were arranged, however, the
teacher’s markers were only ever placed on triangular blocks,
long, skinny, rectangular blocks, and bridge-shaped blocks,
and marked all such blocks in the workspace. Thus, if the
blocks’ “ownership” is taken into account, a simple (PT) rule
might be “mark only red and green blocks,” but a more com-
plicated (NPT) rule involving shape preference could account

Table 1: Differential rule acquisition for study participants in
social vs. nonsocial conditions. ***: p < 0.001

| Task | Condition [ PT Rule | NPT Rule [ Other | p |
Task 1 | social 6 1 13
nonsocial 1 12 8 HHE
Task 2 | social 16 0 4
nonsocial 7 12 2 Hk
Task 3 | social 12 8 -
nonsocial 0 21 - Hkok
Task 4 | social 14 6 -
nonsocial 0 21 - Hkok

for the marking and non-marking of all of the blocks in the
workspace (see Fig. 6).

Task 3 and 4 investigated whether or not visual perspec-
tive is factored into the understanding of task goals. In both
tasks, participants were shown a single construction demon-
stration, and then were asked to construct “the same thing”
using a similar set of blocks. Fig. 5 shows the examples that
were constructed by the teacher. In both tasks, the teacher as-
sembled the examples from left to right. In task 4, the teacher
assembled the word “LiT” so that it read correctly from their
own perspective. Our question was, would the participants ro-
tate the demonstration (the PT rule) so that it read correctly for
themselves, or would they mirror the figure (the NPT rule) so
that it looked exactly the same as the demonstration (and thus
read backwards from their perspective). Task 3, in which the
teacher assembled a sequence of building-like forms, was es-
sentially included as a control, to see if people would perform
any such perspective flipping in a non-linguistic scenario.

The results of the study are summarized in Table 1 where
participant behavior was recorded and classified according to
the exhibited rule. For every task, differences in rule choice be-
tween the social and nonsocial conditions were highly signif-
icant (chi-square, p < 0.001). The most popular rule for each
condition is highlighted in bold (note that, while many partic-

Figure 6: Input domains consistent with the perspective taking
(PT) vs. non-perspective taking (NPT) hypotheses. In visual
perspective taking (left image), the student’s attention is fo-
cused on just the blocks that the teacher can see, excluding the
occluded block. In resource perspective taking (right image),
attention is focused on just the blocks that are considered to be
“the teacher’s,” excluding the other blocks.



Table 2: High-likelihood hypotheses entertained by the robot
at the conclusion of benchmark task demonstrations. The high-
est likelihood (winning) hypotheses are highlighted in bold.

Table 3: Hypotheses selected by study participants following
task demonstrations. The most popular rules are highlighted in
bold.

| Task | Condition | High-Likelihood Hypotheses

[ Task | Condition | Hypotheses Selected

ipants fell into the “Other” category for Task 1, there was very
little rule agreement between these participants). These results
strongly support the intuition that perspective taking plays an
important role in human learning in socially situated contexts.

Robot Evaluation and Discussion

The tasks from our study were used to create a benchmark
suite for our architecture. In our graphical simulation environ-
ment, the robot was presented with the same task demonstra-
tions as were provided to the study participants (Fig. 7). The
learning performance of the robot was analyzed in two condi-
tions: with the perspective taking mechanisms intact, and with
them disabled.

The robot was instructed in real-time by a human teacher.
The teacher delineated task demonstrations using verbal com-
mands: “Leo, I can teach you to do task 1,” “Task 1 is done,”
etc. The teacher could select and move graphical building
blocks within the robot’s 3D workspace via a mouse interface.
This interface allowed the teacher to demonstrate a wide range
of tasks involving complex block arrangements and dynamics.
For our benchmark suite, the teacher followed the same task
protocol that was used in the study, featuring identical block
configurations and movements. For the purposes of perspec-
tive taking, the teacher’s visual perspective was assumed to be
that of the virtual camera through which the scene was ren-
dered.

As the teacher manipulated the blocks, the robot attended
to the teacher’s movements. The robot’s task learning mech-
anisms parsed these movements into discrete actions and as-
sembled a schema representation for the task at hand, as de-
tailed in previous sections. At the conclusion of each demon-
stration, the robot expanded and revised a set of hypotheses
about the intended goal of the task. After the final demonstra-
tion, the robot was instructed to perform the task using a novel
set of blocks arranged in accordance with the human study
protocol. The robot’s behavior was recorded, along with all
of the task hypotheses considered to be valid by the robot’s
learning mechanism.

Table 2 shows the highest-likelihood hypotheses entertained
by the robot in the various task conditions at the conclusion of
the demonstrations. In the perspective taking condition, likely
hypotheses included both those constructed from the teacher’s
perspective as well as those constructed from the robot’s own

Task 1 | with PT all; all but blue Task 1 | social all; number; spatial arrangement
without PT | all but blue nonsocial | all but blue; spatial arrangement;
Task 2 | with PT all red and green; shape preference all but one
without PT | shape preference Task 2 | social all red and green; shape preference;
Task 3 | with PT rotate figure; mirror figure . spatial arrangement
&4 without PT | mirror figure nonsocial | shape preference; all red and green
Task 3 | social rotate figure; mirror figure
&4 nonsocial | mirror figure

perspective; however, as described above, the robot preferred
hypotheses constructed from the teacher’s perspective. The
hypotheses favored by the learning mechanism (and thus ex-
ecuted by the robot) are highlighted in bold. For comparison,
Table 3 displays the rules selected by study participants, with
the most popular rules for each task highlighted in bold.

For every task and condition, the rule learned by the robot
matches the most popular rule selected by the humans. This
strongly suggests that the robot’s perspective taking mecha-
nisms focus its attention on a region of the input space similar
to that attended to by study participants in the presence of a hu-
man teacher. It should also be noted, as evident in the tables,
that participants generally seemed to entertain a more varied
set of hypotheses than the robot. In particular, participants of-
ten demonstrated rules based on spatial or numeric relation-
ships between the objects — relationships which are not yet
represented by the robot. Thus, the differences in behavior be-
tween the humans and the robot can largely be understood as a
difference in the scope of the relationships considered between
the objects in the example space, rather than as a difference in
this underlying space. The robot’s perspective taking mecha-
nisms are successful at bringing the agent’s focus of attention
into alignment with the humans’ in the presence of a social
teacher.

This is the first work to examine the role of perspective tak-
ing for introceptive states (e.g., beliefs and goals) in a human-
robot learning task. It builds upon and integrates two impor-
tant areas of research: (1) ambiguity resolution and perspective
taking, and (2) learning from humans. Ambiguity has been
a topic of interest in dialog systems (Grosz & Sidner 1990;
Gorniak 2005). Others have looked at the use of visual per-
spective taking in collaborative settings (Trafton et al. 2005;
Jones & Hinds 2002). We also draw inspiration from research
into learning from humans, which typically focuses on ei-
ther modeling a human via observation (Horvitz et al. 1998;
Lashkari, Metral, & Maes 1994) or on learning in an in-
teractive setting (Lieberman 2001; Atkeson & Schaal 1997;
Nicolescu & Matari¢ 2003). The contribution of our work is in
combining and extending these thrusts into a novel, integrated
approach where perspective taking is used as an organizing
principle for learning in human-robot interaction.



Figure 7: The robot was presented with similar learning tasks
in a simulated environment.

Conclusion

This paper makes the following contributions. First, in a novel
human subjects study, we show the important role that per-
spective taking plays in learning within a socially situated con-
text. People use perspective taking to entertain a different set
of hypotheses when demonstrations are presented by another
person, verses when they are presented in a nonsocial context.
Thus, perspective taking abilities shall be critical for robots
that interact with and learn from people in social contexts.

Second, we present a novel architecture for collaborative
human-robot interaction, informed by recent scientific find-
ings for how people are able to take the perspective of oth-
ers, where simulation-theoretic mechanisms serve as the or-
ganizational principle for the robot’s perspective taking skills
over multiple system levels (e.g., perceptual-belief, action-
goal, task learning, etc.).

Finally, we evaluated our architecture on a benchmark suite
drawn from the human subjects study and show that our hu-
manoid robot can apply perspective taking to draw the same
conclusions as humans under conditions of high ambiguity.
Perspective taking, both in humans and in our architecture, fo-
cuses the agent’s attention on the subset of the problem space
that is important to the teacher. This constrained attention al-
lows the agent to overcome ambiguity and incompleteness that
can often be present in human demonstrations.

Acknowledgments

The work presented in this paper is a result of ongoing efforts
of the graduate and undergraduate students of the MIT Media
Lab Robotic Life Group. This work is funded by the Digital
Life and Things That Think consortia of the MIT Media Lab.

Jesse Gray would like to thank Samsung Electronics for their
support.

References

Atkeson, C. G., and Schaal, S. 1997. Robot learning from demon-
stration. In Proc. 14th International Conference on Machine Learn-
ing, 12-20. Morgan Kaufmann.

Barsalou, L. W.; Niedenthal, P. M.; Barbey, A.; and Ruppert, J.
2003. Social embodiment. The Psychology of Learning and Mo-
tivation 43.

Blumberg, B.; Downie, M.; Ivanov, Y.; Berlin, M.; Johnson, M. P.;
and Tomlinson, B. 2002. Integrated learning for interactive syn-
thetic characters. ACM Transactions on Graphics 21(3: Proceedings
of ACM SIGGRAPH 2002).

Carberry, S. 2001. Techniques for plan recognition. User Modeling
and User-Adapted Interaction 11(1-2):31-48.

Davies, M., and Stone, T. 1995. Introduction. In Davies, M., and
Stone, T., eds., Folk Psychology: The Theory of Mind Debate. Cam-
bridge: Blackwell.

Gorniak, P. 2005. The Affordance-Based Concept. Phd thesis, MIT.

Gray, J.; Breazeal, C.; Berlin, M.; Brooks, A.; and Lieberman, J.
2005. Action parsing and goal inference using self as simulator. In
14th IEEE International Workshop on Robot and Human Interactive
Communication (ROMAN). Nashville, Tennessee: IEEE.

Grosz, B. J., and Sidner, C. L. 1990. Plans for discourse. In Cohen,
P. R.; Morgan, J.; and Pollack, M. E., eds., Intentions in communi-
cation. Cambridge, MA: MIT Press. chapter 20, 417-444.

Horvitz, E.; Breese, J.; Heckerman, D.; Hovel, D.; and Rommelse,
K. 1998. The lumiere project: Bayesian user modeling for infer-
ring the goals and needs of software users. In In Proceedings of
the Fourteenth Conference on Uncertainty in Artificial Intelligence,
256-265.

Jones, H., and Hinds, P. 2002. Extreme work teams: using swat
teams as a model for coordinating distributed robots. In Proceedings
of the 2002 ACM conference on Computer supported cooperative
work, 372-381. ACM Press.

Lashkari, Y.; Metral, M.; and Maes, P. 1994. Collaborative Inter-
face Agents. In Proceedings of the Twelfth National Conference on
Artificial Intelligence, volume 1. Seattle, WA: AAAI Press.

Lieberman, H., ed. 2001. Your Wish is My Command: Programming
by Example. San Francisco: Morgan Kaufmann.

Lockerd, A., and Breazeal, C. 2004. Tutelage and socially guided
robot learning. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).

Nicolescu, M. N., and Matari¢, M. J. 2003. Natural methods for
robot task learning: Instructive demonstrations, generalization and
practice. In Proceedings of the Second International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems.

Sebanz, N.; Bekkering, H.; and Knoblich, G. 2006. Joint action:
Bodies and minds moving together. Trends in Cognitive Sciences
10(2):70-76.

Trafton, J. G.; Cassimatis, N. L.; Bugajska, M. D.; Brock, D. P;
Mintz, F. E.; and Schultz, A. C. 2005. Enabling effective human-
robot interaction using perspective-taking in robots. /IEEE Transac-
tions on Systems, Man, and Cybernetics 35(4):460-470.



